sglang0.4.5.post1/python/sglang/srt/managers/multimodal_processors/clip.py

64 lines
2.1 KiB
Python

import asyncio
from typing import List, Union
from sglang.srt.managers.multimodal_processors.base_processor import (
BaseMultimodalProcessor,
get_global_processor,
)
from sglang.srt.models.clip import CLIPModel
from sglang.srt.utils import load_image
class ClipImageProcessor(BaseMultimodalProcessor):
models = [CLIPModel]
def __init__(self, hf_config, server_args, _processor):
super().__init__(hf_config, server_args, _processor)
@staticmethod
def _process_single_image_task(images, input_text):
# input_ids', 'attention_mask', 'pixel_values', 'aspect_ratio_ids', 'aspect_ratio_mask', 'cross_attention_mask'
return get_global_processor()(
images=images, text=input_text, return_tensors="pt"
)
async def _process_single_image(self, images, input_text):
if self.executor is not None:
loop = asyncio.get_event_loop()
image_inputs = await loop.run_in_executor(
self.executor,
ClipImageProcessor._process_single_image_task,
images,
input_text,
)
else:
image_inputs = self._processor(
images=images, text=[input_text], return_tensors="pt"
)
return image_inputs
async def process_mm_data_async(
self, image_data: List[Union[str, bytes]], input_text, *args, **kwargs
):
if not image_data:
return None
if isinstance(input_text, list):
assert len(input_text) and isinstance(input_text[0], int)
input_text = self._processor.tokenizer.decode(input_text)
if not isinstance(image_data, list):
image_data = [image_data]
if len(image_data) > 0:
images = [load_image(image)[0] for image in image_data]
else:
images = load_image(image_data[0])[0]
image_inputs = await self._process_single_image(images, input_text)
image_inputs["data_hashes"] = [hash(str(image_data))]
image_inputs["input_ids"] = image_inputs["input_ids"].tolist()[0]
return image_inputs