sglang0.4.5.post1/python/sglang/srt/managers/multimodal_processors/gemma3.py

84 lines
2.7 KiB
Python

from typing import List, Union
from transformers.utils import logging
from sglang.srt.managers.multimodal_processor import (
BaseMultimodalProcessor as SGLangBaseProcessor,
)
from sglang.srt.managers.multimodal_processors.base_processor import (
MultimodalSpecialTokens,
get_global_processor,
)
from sglang.srt.models.gemma3_mm import Gemma3ForConditionalGeneration
# Copied from: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gemma3/image_processing_gemma3_fast.py
# will be removed in the future
logger = logging.get_logger(__name__)
class Gemma3SGLangImageProcessor(SGLangBaseProcessor):
models = [Gemma3ForConditionalGeneration]
def __init__(self, hf_config, server_args, _processor):
super().__init__(hf_config, server_args, _processor)
self.IMAGE_TOKEN = "<start_of_image>"
self.IM_START_TOKEN_ID = hf_config.boi_token_index
self.IM_END_TOKEN_ID = hf_config.eoi_token_index
async def _process_single_image(self, images, input_text) -> dict:
if isinstance(images, list) and len(images) == 0:
images = None
processor = get_global_processor()
result = processor.__call__(
text=[input_text],
images=images,
padding=True,
return_tensors="pt",
# if RGBA, this needs to be set
# images_kwargs={
# "input_data_format": ChannelDimension.FIRST
# }
)
pixel_values = getattr(result, "pixel_values", None)
return {
"input_ids": result.input_ids,
"pixel_values": pixel_values,
}
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
input_ids,
request_obj,
max_req_input_len,
*args,
**kwargs,
):
if not image_data:
return None
if isinstance(image_data, str):
image_data = [image_data]
image_token = self.IMAGE_TOKEN
base_output = self.load_mm_data(
input_ids=input_ids,
image_data=image_data,
multimodal_tokens=MultimodalSpecialTokens(image_token=image_token),
max_req_input_len=max_req_input_len,
discard_alpha_channel=True,
)
ret = await self._process_single_image(
input_text=base_output.input_text, images=base_output.images
)
return {
"input_ids": ret["input_ids"].flatten().tolist(),
"pixel_values": ret["pixel_values"],
"data_hashes": base_output.mm_data_hashes,
"im_start_id": self.IM_START_TOKEN_ID,
"im_end_id": self.IM_END_TOKEN_ID,
}