sglang0.4.5.post1/python/sglang/srt/managers/multimodal_processors/minicpm.py

168 lines
5.8 KiB
Python

import asyncio
from typing import List, Union
import torch
from sglang.srt.managers.multimodal_processors.base_processor import (
BaseMultimodalProcessor,
MultimodalSpecialTokens,
get_global_processor,
)
from sglang.srt.models.minicpmo import MiniCPMO
from sglang.srt.models.minicpmv import MiniCPMV
# Compatible with both 'O' and 'V'
class MiniCPMMultimodalProcessor(BaseMultimodalProcessor):
models = [MiniCPMV, MiniCPMO]
def __init__(self, hf_config, server_args, _processor):
super().__init__(hf_config, server_args, _processor)
self.image_token = "(<image>./</image>)"
self.audio_token = "(<audio>./</audio>)"
@staticmethod
def _process_data_task(input_text, images=None, audios=None):
if isinstance(images, list) and len(images) == 0:
images = None
if isinstance(audios, list) and len(audios) == 0:
audios = None
result = get_global_processor().__call__(
text=input_text,
images=images,
audios=audios,
return_tensors="pt",
chunk_input=True,
)
return {
"input_ids": result.input_ids,
"pixel_values": getattr(result, "pixel_values", None),
"tgt_sizes": getattr(result, "tgt_sizes", None),
"audio_features": getattr(result, "audio_features", None),
"audio_feature_lens": getattr(result, "audio_feature_lens", None),
"audio_bounds": getattr(result, "audio_bounds", None),
}
async def _process_data(self, images, input_text, audios=None):
if self.executor is not None:
loop = asyncio.get_event_loop()
multimodal_data_inputs = await loop.run_in_executor(
self.executor,
MiniCPMMultimodalProcessor._process_data_task,
input_text,
images,
audios,
)
else:
multimodal_data_inputs = self._processor(
images=images, text=input_text, audios=audios, return_tensors="pt"
)
return multimodal_data_inputs
async def process_mm_data_async(
self,
image_data: List[Union[str, bytes]],
input_ids,
request_obj,
max_req_input_len,
):
audio_data = request_obj.audio_data
if not image_data and not audio_data:
return None
if not isinstance(image_data, list):
image_data = [image_data]
if not isinstance(audio_data, list):
audio_data = [audio_data]
base_output = self.load_mm_data(
input_ids=input_ids,
max_req_input_len=max_req_input_len,
audio_data=audio_data,
image_data=image_data,
multimodal_tokens=MultimodalSpecialTokens(
image_token=self.image_token, audio_token=self.audio_token
),
)
if base_output is None:
return None
res = await self._process_data(
images=base_output.images,
input_text=base_output.input_text,
audios=base_output.audios,
)
# Collect special token ids
tokenizer = self._processor.tokenizer
slice_start_id, slice_end_id, audio_start_id, audio_end_id = (
None,
None,
None,
None,
)
if tokenizer.slice_start_id:
slice_start_id = tokenizer.slice_start_id
slice_end_id = tokenizer.slice_end_id
if hasattr(tokenizer, "audio_start_id"):
audio_start_id = tokenizer.audio_start_id
audio_end_id = tokenizer.audio_end_id
im_token_id = tokenizer.unk_token_id
pixel_values = res["pixel_values"]
tgt_sizes = res["tgt_sizes"]
if not isinstance(pixel_values, (torch.Tensor, list)):
raise ValueError(
"Incorrect type of pixel values. " f"Got type: {type(pixel_values)}"
)
if not isinstance(tgt_sizes, (torch.Tensor, list)):
raise ValueError(
"Incorrect type of target sizes. " f"Got type: {type(tgt_sizes)}"
)
if len(pixel_values) != len(tgt_sizes):
raise ValueError(
"Inconsistent batch lengths, found: "
f"{len(pixel_values)} vs. {len(tgt_sizes)}"
)
pixel_values_flat: List[torch.Tensor] = []
tgt_sizes_flat: List[torch.Tensor] = []
for pixel_b, tgt_b in zip(pixel_values, tgt_sizes):
# per image
if len(pixel_b) != len(tgt_b):
raise ValueError(
"Inconsistent N lengths, found: " f"{len(pixel_b)} vs {len(tgt_b)}"
)
for pixel_n, tgt_n in zip(pixel_b, tgt_b):
pixel_values_flat += [pixel_n]
tgt_sizes_flat += [tgt_n]
pixel_values = pixel_values_flat
if len(tgt_sizes_flat) == 0:
tgt_sizes = None
else:
tgt_sizes = torch.stack(tgt_sizes_flat)
if not isinstance(res["audio_features"], list):
res["audio_features"] = [res["audio_features"]]
return {
"input_ids": res["input_ids"].flatten().tolist(),
"pixel_values": pixel_values,
"tgt_sizes": tgt_sizes,
"data_hashes": base_output.mm_data_hashes,
"modalities": request_obj.modalities or ["image"],
"audio_start_id": audio_start_id,
"audio_end_id": audio_end_id,
"audio_features": res["audio_features"],
"audio_bounds": res["audio_bounds"],
"audio_feature_lens": res["audio_feature_lens"],
"im_token_id": im_token_id,
"im_start_id": tokenizer.im_start_id,
"im_end_id": tokenizer.im_end_id,
"slice_start_id": slice_start_id,
"slice_end_id": slice_end_id,
}