168 lines
5.8 KiB
Python
168 lines
5.8 KiB
Python
import asyncio
|
|
from typing import List, Union
|
|
|
|
import torch
|
|
|
|
from sglang.srt.managers.multimodal_processors.base_processor import (
|
|
BaseMultimodalProcessor,
|
|
MultimodalSpecialTokens,
|
|
get_global_processor,
|
|
)
|
|
from sglang.srt.models.minicpmo import MiniCPMO
|
|
from sglang.srt.models.minicpmv import MiniCPMV
|
|
|
|
|
|
# Compatible with both 'O' and 'V'
|
|
class MiniCPMMultimodalProcessor(BaseMultimodalProcessor):
|
|
models = [MiniCPMV, MiniCPMO]
|
|
|
|
def __init__(self, hf_config, server_args, _processor):
|
|
super().__init__(hf_config, server_args, _processor)
|
|
self.image_token = "(<image>./</image>)"
|
|
self.audio_token = "(<audio>./</audio>)"
|
|
|
|
@staticmethod
|
|
def _process_data_task(input_text, images=None, audios=None):
|
|
|
|
if isinstance(images, list) and len(images) == 0:
|
|
images = None
|
|
if isinstance(audios, list) and len(audios) == 0:
|
|
audios = None
|
|
result = get_global_processor().__call__(
|
|
text=input_text,
|
|
images=images,
|
|
audios=audios,
|
|
return_tensors="pt",
|
|
chunk_input=True,
|
|
)
|
|
return {
|
|
"input_ids": result.input_ids,
|
|
"pixel_values": getattr(result, "pixel_values", None),
|
|
"tgt_sizes": getattr(result, "tgt_sizes", None),
|
|
"audio_features": getattr(result, "audio_features", None),
|
|
"audio_feature_lens": getattr(result, "audio_feature_lens", None),
|
|
"audio_bounds": getattr(result, "audio_bounds", None),
|
|
}
|
|
|
|
async def _process_data(self, images, input_text, audios=None):
|
|
if self.executor is not None:
|
|
loop = asyncio.get_event_loop()
|
|
multimodal_data_inputs = await loop.run_in_executor(
|
|
self.executor,
|
|
MiniCPMMultimodalProcessor._process_data_task,
|
|
input_text,
|
|
images,
|
|
audios,
|
|
)
|
|
else:
|
|
multimodal_data_inputs = self._processor(
|
|
images=images, text=input_text, audios=audios, return_tensors="pt"
|
|
)
|
|
|
|
return multimodal_data_inputs
|
|
|
|
async def process_mm_data_async(
|
|
self,
|
|
image_data: List[Union[str, bytes]],
|
|
input_ids,
|
|
request_obj,
|
|
max_req_input_len,
|
|
):
|
|
audio_data = request_obj.audio_data
|
|
if not image_data and not audio_data:
|
|
return None
|
|
if not isinstance(image_data, list):
|
|
image_data = [image_data]
|
|
if not isinstance(audio_data, list):
|
|
audio_data = [audio_data]
|
|
|
|
base_output = self.load_mm_data(
|
|
input_ids=input_ids,
|
|
max_req_input_len=max_req_input_len,
|
|
audio_data=audio_data,
|
|
image_data=image_data,
|
|
multimodal_tokens=MultimodalSpecialTokens(
|
|
image_token=self.image_token, audio_token=self.audio_token
|
|
),
|
|
)
|
|
if base_output is None:
|
|
return None
|
|
|
|
res = await self._process_data(
|
|
images=base_output.images,
|
|
input_text=base_output.input_text,
|
|
audios=base_output.audios,
|
|
)
|
|
|
|
# Collect special token ids
|
|
tokenizer = self._processor.tokenizer
|
|
slice_start_id, slice_end_id, audio_start_id, audio_end_id = (
|
|
None,
|
|
None,
|
|
None,
|
|
None,
|
|
)
|
|
if tokenizer.slice_start_id:
|
|
slice_start_id = tokenizer.slice_start_id
|
|
slice_end_id = tokenizer.slice_end_id
|
|
if hasattr(tokenizer, "audio_start_id"):
|
|
audio_start_id = tokenizer.audio_start_id
|
|
audio_end_id = tokenizer.audio_end_id
|
|
|
|
im_token_id = tokenizer.unk_token_id
|
|
pixel_values = res["pixel_values"]
|
|
tgt_sizes = res["tgt_sizes"]
|
|
|
|
if not isinstance(pixel_values, (torch.Tensor, list)):
|
|
raise ValueError(
|
|
"Incorrect type of pixel values. " f"Got type: {type(pixel_values)}"
|
|
)
|
|
|
|
if not isinstance(tgt_sizes, (torch.Tensor, list)):
|
|
raise ValueError(
|
|
"Incorrect type of target sizes. " f"Got type: {type(tgt_sizes)}"
|
|
)
|
|
|
|
if len(pixel_values) != len(tgt_sizes):
|
|
raise ValueError(
|
|
"Inconsistent batch lengths, found: "
|
|
f"{len(pixel_values)} vs. {len(tgt_sizes)}"
|
|
)
|
|
|
|
pixel_values_flat: List[torch.Tensor] = []
|
|
tgt_sizes_flat: List[torch.Tensor] = []
|
|
for pixel_b, tgt_b in zip(pixel_values, tgt_sizes):
|
|
# per image
|
|
if len(pixel_b) != len(tgt_b):
|
|
raise ValueError(
|
|
"Inconsistent N lengths, found: " f"{len(pixel_b)} vs {len(tgt_b)}"
|
|
)
|
|
for pixel_n, tgt_n in zip(pixel_b, tgt_b):
|
|
pixel_values_flat += [pixel_n]
|
|
tgt_sizes_flat += [tgt_n]
|
|
|
|
pixel_values = pixel_values_flat
|
|
if len(tgt_sizes_flat) == 0:
|
|
tgt_sizes = None
|
|
else:
|
|
tgt_sizes = torch.stack(tgt_sizes_flat)
|
|
if not isinstance(res["audio_features"], list):
|
|
res["audio_features"] = [res["audio_features"]]
|
|
return {
|
|
"input_ids": res["input_ids"].flatten().tolist(),
|
|
"pixel_values": pixel_values,
|
|
"tgt_sizes": tgt_sizes,
|
|
"data_hashes": base_output.mm_data_hashes,
|
|
"modalities": request_obj.modalities or ["image"],
|
|
"audio_start_id": audio_start_id,
|
|
"audio_end_id": audio_end_id,
|
|
"audio_features": res["audio_features"],
|
|
"audio_bounds": res["audio_bounds"],
|
|
"audio_feature_lens": res["audio_feature_lens"],
|
|
"im_token_id": im_token_id,
|
|
"im_start_id": tokenizer.im_start_id,
|
|
"im_end_id": tokenizer.im_end_id,
|
|
"slice_start_id": slice_start_id,
|
|
"slice_end_id": slice_end_id,
|
|
}
|