sglang0.4.5.post1/python/sglang/srt/managers/tp_worker_overlap_thread.py

241 lines
8.9 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""A tensor parallel worker."""
import dataclasses
import logging
import signal
import threading
from queue import Queue
from typing import Optional
import psutil
import torch
from sglang.srt.managers.io_struct import (
GetWeightsByNameReqInput,
InitWeightsUpdateGroupReqInput,
UpdateWeightFromDiskReqInput,
UpdateWeightsFromDistributedReqInput,
UpdateWeightsFromTensorReqInput,
)
from sglang.srt.managers.schedule_batch import ModelWorkerBatch
from sglang.srt.managers.tp_worker import TpModelWorker
from sglang.srt.server_args import ServerArgs
from sglang.srt.utils import DynamicGradMode, get_compiler_backend
from sglang.utils import get_exception_traceback
logger = logging.getLogger(__name__)
@torch.compile(dynamic=True, backend=get_compiler_backend())
def resolve_future_token_ids(input_ids, future_token_ids_map):
input_ids[:] = torch.where(
input_ids < 0,
future_token_ids_map[torch.clamp(-input_ids, min=0)],
input_ids,
)
class TpModelWorkerClient:
"""A tensor parallel model worker."""
def __init__(
self,
server_args: ServerArgs,
gpu_id: int,
tp_rank: int,
dp_rank: Optional[int],
nccl_port: int,
):
# Load the model
self.worker = TpModelWorker(server_args, gpu_id, tp_rank, dp_rank, nccl_port)
self.max_running_requests = self.worker.max_running_requests
self.device = self.worker.device
self.gpu_id = gpu_id
# Init future mappings
self.future_token_ids_ct = 0
self.future_token_ids_limit = self.max_running_requests * 3
self.future_token_ids_map = torch.empty(
(self.max_running_requests * 5,), dtype=torch.int64, device=self.device
)
# Launch threads
self.input_queue = Queue()
self.output_queue = Queue()
self.forward_stream = torch.get_device_module(self.device).Stream()
self.forward_thread = threading.Thread(
target=self.forward_thread_func,
)
self.forward_thread.start()
self.parent_process = psutil.Process().parent()
self.scheduler_stream = torch.get_device_module(self.device).current_stream()
if self.device == "cpu":
self.scheduler_stream.synchronize = lambda: None # No-op for CPU
def get_worker_info(self):
return self.worker.get_worker_info()
def get_pad_input_ids_func(self):
return self.worker.get_pad_input_ids_func()
def get_tp_cpu_group(self):
return self.worker.get_tp_cpu_group()
def get_attention_tp_cpu_group(self):
return self.worker.get_attention_tp_cpu_group()
def get_memory_pool(self):
return (
self.worker.model_runner.req_to_token_pool,
self.worker.model_runner.token_to_kv_pool_allocator,
)
def get_kv_cache(self):
return self.worker.model_runner.token_to_kv_pool
def forward_thread_func(self):
try:
with torch.get_device_module(self.device).stream(self.forward_stream):
self.forward_thread_func_()
except Exception:
traceback = get_exception_traceback()
logger.error(f"TpModelWorkerClient hit an exception: {traceback}")
self.parent_process.send_signal(signal.SIGQUIT)
@DynamicGradMode()
def forward_thread_func_(self):
batch_pt = 0
batch_lists = [None] * 2
while True:
model_worker_batch, future_token_ids_ct = self.input_queue.get()
if not model_worker_batch:
break
# Keep a reference of model_worker_batch by storing it into a list.
# Otherwise, the tensor members of model_worker_batch will be released
# by pytorch and cause CUDA illegal memory access errors.
batch_lists[batch_pt % 2] = model_worker_batch
batch_pt += 1
# Create event
self.launch_done = threading.Event()
copy_done = torch.get_device_module(self.device).Event()
# Resolve future tokens in the input
input_ids = model_worker_batch.input_ids
resolve_future_token_ids(input_ids, self.future_token_ids_map)
# Run forward
logits_output, next_token_ids = self.worker.forward_batch_generation(
model_worker_batch, self.launch_done
)
# Update the future token ids map
bs = len(model_worker_batch.seq_lens)
self.future_token_ids_map[
future_token_ids_ct + 1 : future_token_ids_ct + bs + 1
] = next_token_ids
# Copy results to the CPU
if model_worker_batch.return_logprob:
logits_output.next_token_logprobs = (
logits_output.next_token_logprobs.to("cpu", non_blocking=True)
)
if logits_output.input_token_logprobs is not None:
logits_output.input_token_logprobs = (
logits_output.input_token_logprobs.to("cpu", non_blocking=True)
)
if logits_output.hidden_states is not None:
logits_output.hidden_states = logits_output.hidden_states.to(
"cpu", non_blocking=True
)
next_token_ids = next_token_ids.to("cpu", non_blocking=True)
copy_done.record()
self.output_queue.put((copy_done, logits_output, next_token_ids))
def resolve_batch_result(self, bid: int):
copy_done, logits_output, next_token_ids = self.output_queue.get()
copy_done.synchronize()
self.launch_done.wait()
if logits_output.next_token_logprobs is not None:
logits_output.next_token_logprobs = (
logits_output.next_token_logprobs.tolist()
)
if logits_output.input_token_logprobs is not None:
logits_output.input_token_logprobs = tuple(
logits_output.input_token_logprobs.tolist()
)
next_token_ids = next_token_ids.tolist()
return logits_output, next_token_ids
def forward_batch_generation(self, model_worker_batch: ModelWorkerBatch):
# Create a new copy of sampling_info because it will be updated in-place by the scheduler for the next batch.
sampling_info = model_worker_batch.sampling_info
sampling_info.update_penalties()
model_worker_batch.sampling_info = self.cur_sampling_info = dataclasses.replace(
sampling_info,
sampling_info_done=threading.Event(),
penalizer_orchestrator=None,
)
# A cuda stream sync here to avoid the cuda illegal memory access error.
self.scheduler_stream.synchronize()
# Push a new batch to the queue
self.input_queue.put((model_worker_batch, self.future_token_ids_ct))
# Allocate output future objects
bs = len(model_worker_batch.seq_lens)
future_next_token_ids = torch.arange(
-(self.future_token_ids_ct + 1),
-(self.future_token_ids_ct + 1 + bs),
-1,
dtype=torch.int64,
device=self.device,
)
self.future_token_ids_ct = (
self.future_token_ids_ct + bs
) % self.future_token_ids_limit
return None, future_next_token_ids
def update_weights_from_disk(self, recv_req: UpdateWeightFromDiskReqInput):
success, message = self.worker.update_weights_from_disk(recv_req)
return success, message
def init_weights_update_group(self, recv_req: InitWeightsUpdateGroupReqInput):
success, message = self.worker.init_weights_update_group(recv_req)
return success, message
def update_weights_from_distributed(
self, recv_req: UpdateWeightsFromDistributedReqInput
):
success, message = self.worker.update_weights_from_distributed(recv_req)
return success, message
def update_weights_from_tensor(self, recv_req: UpdateWeightsFromTensorReqInput):
success, message = self.worker.update_weights_from_tensor(recv_req)
return success, message
def get_weights_by_name(self, recv_req: GetWeightsByNameReqInput):
return self.worker.get_weights_by_name(recv_req)
def __delete__(self):
self.input_queue.put((None, None))
self.copy_queue.put((None, None, None))