sglang0.4.5.post1/python/sglang/srt/metrics/collector.py

282 lines
9.1 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Utilities for Prometheus Metrics Collection."""
import time
from dataclasses import dataclass
from typing import Dict, Union
@dataclass
class SchedulerStats:
num_running_reqs: int = 0
num_used_tokens: int = 0
token_usage: float = 0.0
gen_throughput: float = 0.0
num_queue_reqs: int = 0
cache_hit_rate: float = 0.0
spec_accept_length: float = 0.0
class SchedulerMetricsCollector:
def __init__(self, labels: Dict[str, str]) -> None:
# We need to import prometheus_client after setting the env variable `PROMETHEUS_MULTIPROC_DIR`
from prometheus_client import Gauge
self.labels = labels
self.last_log_time = time.time()
self.num_running_reqs = Gauge(
name="sglang:num_running_reqs",
documentation="The number of running requests.",
labelnames=labels.keys(),
multiprocess_mode="mostrecent",
)
self.num_used_tokens = Gauge(
name="sglang:num_used_tokens",
documentation="The number of used tokens.",
labelnames=labels.keys(),
multiprocess_mode="mostrecent",
)
self.token_usage = Gauge(
name="sglang:token_usage",
documentation="The token usage.",
labelnames=labels.keys(),
multiprocess_mode="mostrecent",
)
self.gen_throughput = Gauge(
name="sglang:gen_throughput",
documentation="The generation throughput (token/s).",
labelnames=labels.keys(),
multiprocess_mode="mostrecent",
)
self.num_queue_reqs = Gauge(
name="sglang:num_queue_reqs",
documentation="The number of requests in the waiting queue.",
labelnames=labels.keys(),
multiprocess_mode="mostrecent",
)
self.cache_hit_rate = Gauge(
name="sglang:cache_hit_rate",
documentation="The prefix cache hit rate.",
labelnames=labels.keys(),
multiprocess_mode="mostrecent",
)
self.spec_accept_length = Gauge(
name="sglang:spec_accept_length",
documentation="The average acceptance length of speculative decoding.",
labelnames=labels.keys(),
multiprocess_mode="mostrecent",
)
def _log_gauge(self, gauge, data: Union[int, float]) -> None:
# Convenience function for logging to gauge.
gauge.labels(**self.labels).set(data)
def log_stats(self, stats: SchedulerStats) -> None:
self._log_gauge(self.num_running_reqs, stats.num_running_reqs)
self._log_gauge(self.num_used_tokens, stats.num_used_tokens)
self._log_gauge(self.token_usage, stats.token_usage)
self._log_gauge(self.gen_throughput, stats.gen_throughput)
self._log_gauge(self.num_queue_reqs, stats.num_queue_reqs)
self._log_gauge(self.cache_hit_rate, stats.cache_hit_rate)
self._log_gauge(self.spec_accept_length, stats.spec_accept_length)
self.last_log_time = time.time()
class TokenizerMetricsCollector:
def __init__(self, labels: Dict[str, str]) -> None:
# We need to import prometheus_client after setting the env variable `PROMETHEUS_MULTIPROC_DIR`
from prometheus_client import Counter, Histogram
self.labels = labels
self.prompt_tokens_total = Counter(
name="sglang:prompt_tokens_total",
documentation="Number of prefill tokens processed.",
labelnames=labels.keys(),
)
self.generation_tokens_total = Counter(
name="sglang:generation_tokens_total",
documentation="Number of generation tokens processed.",
labelnames=labels.keys(),
)
self.cached_tokens_total = Counter(
name="sglang:cached_tokens_total",
documentation="Number of cached prompt tokens.",
labelnames=labels.keys(),
)
self.num_requests_total = Counter(
name="sglang:num_requests_total",
documentation="Number of requests processed.",
labelnames=labels.keys(),
)
self.histogram_time_to_first_token = Histogram(
name="sglang:time_to_first_token_seconds",
documentation="Histogram of time to first token in seconds.",
labelnames=labels.keys(),
buckets=[
0.1,
0.3,
0.5,
0.7,
0.9,
1,
2,
4,
6,
8,
10,
20,
40,
60,
80,
120,
160,
],
)
self.histogram_time_per_output_token = Histogram(
name="sglang:time_per_output_token_seconds",
documentation="Histogram of time per output token in seconds.",
labelnames=labels.keys(),
buckets=[
0.002,
0.005,
0.010,
0.020,
0.030,
0.040,
0.050,
0.060,
0.070,
0.080,
0.090,
0.100,
0.150,
0.200,
0.300,
0.400,
0.600,
0.800,
1.000,
2.000,
],
)
self.histogram_inter_token_latency_seconds = Histogram(
name="sglang:inter_token_latency_seconds",
documentation="Histogram of inter-token latency in seconds.",
labelnames=labels.keys(),
buckets=[
0.002,
0.004,
0.006,
0.008,
0.010,
0.015,
0.020,
0.025,
0.030,
0.035,
0.040,
0.050,
0.075,
0.100,
0.150,
0.200,
0.300,
0.400,
0.500,
0.750,
1.000,
2.000,
],
)
self.histogram_e2e_request_latency = Histogram(
name="sglang:e2e_request_latency_seconds",
documentation="Histogram of End-to-end request latency in seconds",
labelnames=labels.keys(),
buckets=[
0.1,
0.2,
0.4,
0.8,
1,
2,
5,
10,
20,
40,
60,
80,
100,
150,
200,
250,
300,
350,
500,
1000,
],
)
def _log_histogram(self, histogram, data: Union[int, float]) -> None:
histogram.labels(**self.labels).observe(data)
def observe_one_finished_request(
self,
prompt_tokens: int,
generation_tokens: int,
cached_tokens: int,
e2e_latency: float,
):
self.prompt_tokens_total.labels(**self.labels).inc(prompt_tokens)
self.generation_tokens_total.labels(**self.labels).inc(generation_tokens)
self.cached_tokens_total.labels(**self.labels).inc(cached_tokens)
self.num_requests_total.labels(**self.labels).inc(1)
self._log_histogram(self.histogram_e2e_request_latency, e2e_latency)
if generation_tokens >= 1:
self.histogram_time_per_output_token.labels(**self.labels).observe(
e2e_latency / generation_tokens
)
def observe_time_to_first_token(self, value: float):
self.histogram_time_to_first_token.labels(**self.labels).observe(value)
def observe_inter_token_latency(self, internval: float, num_new_tokens: int):
adjusted_interval = internval / num_new_tokens
# A faster version of the Histogram::observe which observes multiple values at the same time.
# reference: https://github.com/prometheus/client_python/blob/v0.21.1/prometheus_client/metrics.py#L639
his = self.histogram_inter_token_latency_seconds.labels(**self.labels)
his._sum.inc(internval)
for i, bound in enumerate(his._upper_bounds):
if adjusted_interval <= bound:
his._buckets[i].inc(num_new_tokens)
break