sglang0.4.5.post1/python/sglang/srt/models/clip.py

564 lines
19 KiB
Python

# Adapted from
# https://github.com/huggingface/transformers/blob/af9b2eaa54c150741f298d6db939af6328e1dc38/src/transformers/models/clip/modeling_clip.py
from functools import partial
from typing import Iterable, List, Optional, Tuple, Type, Union
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
from transformers.modeling_attn_mask_utils import _create_4d_causal_attention_mask
from sglang.srt.layers.activation import QuickGELU
from sglang.srt.layers.attention.vision import VisionAttention
from sglang.srt.layers.linear import ColumnParallelLinear, RowParallelLinear
from sglang.srt.layers.pooler import EmbeddingPoolerOutput, Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.managers.schedule_batch import MultimodalInputs
from sglang.srt.model_executor.model_runner import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.utils import add_prefix
class CLIPVisionEmbeddings(nn.Module):
def __init__(self, config: CLIPVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
assert self.image_size % self.patch_size == 0
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer(
"position_ids",
torch.arange(self.num_positions).expand((1, -1)),
persistent=False,
)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
batch_size = pixel_values.shape[0]
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(
pixel_values.to(dtype=target_dtype)
) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
class CLIPTextEmbeddings(nn.Module):
def __init__(self, config: CLIPTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(
config.max_position_embeddings, embed_dim
)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids",
torch.arange(config.max_position_embeddings).expand((1, -1)),
persistent=False,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = (
input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
)
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
class CLIPMLP(nn.Module):
def __init__(
self,
config,
act_layer: Type[nn.Module] = QuickGELU,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.fc1 = ColumnParallelLinear(
config.hidden_size,
config.intermediate_size,
quant_config=quant_config,
prefix=add_prefix("fc1", prefix),
)
self.act = act_layer()
self.fc2 = RowParallelLinear(
config.intermediate_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("fc2", prefix),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x_parallel, _ = self.fc1(x)
x_parallel = self.act(x_parallel)
x, _ = self.fc2(x_parallel)
return x
class CLIPEncoderLayer(nn.Module):
def __init__(
self,
config: CLIPVisionConfig,
act_layer: Type[nn.Module] = QuickGELU,
norm_layer: Type[nn.Module] = None,
attn_implementation: Optional[str] = "sdpa",
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
if norm_layer is None:
norm_layer = partial(nn.LayerNorm, eps=config.layer_norm_eps)
self.layer_norm1 = norm_layer(config.hidden_size)
self.layer_norm2 = norm_layer(config.hidden_size)
if attn_implementation == "sdpa":
use_context_forward = False
softmax_in_single_precision = False
elif attn_implementation == "flash_attention_2":
softmax_in_single_precision = False
use_context_forward = True
elif attn_implementation == "eager":
softmax_in_single_precision = True
use_context_forward = False
self.self_attn = VisionAttention(
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
projection_size=config.hidden_size,
use_qkv_parallel=True,
use_context_forward=use_context_forward,
softmax_in_single_precision=softmax_in_single_precision,
flatten_batch=True,
quant_config=quant_config,
prefix=add_prefix("attn", prefix),
)
self.mlp = CLIPMLP(
config,
act_layer=act_layer,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
# CLIP text model uses both `causal_attention_mask` and `attention_mask`
if attention_mask is not None and causal_attention_mask is not None:
attn_mask = attention_mask + causal_attention_mask
elif causal_attention_mask is not None:
attn_mask = causal_attention_mask
else:
attn_mask = attention_mask
hidden_states = self.self_attn(
hidden_states,
attention_mask=attn_mask,
# causal_attention_mask=causal_attention_mask,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class CLIPEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self
attention layers. Each layer is a [`CLIPEncoderLayer`].
Args:
config: CLIPConfig
"""
def __init__(
self,
config: CLIPVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
num_hidden_layers = config.num_hidden_layers
norm_layer = partial(nn.LayerNorm, eps=config.layer_norm_eps)
self.layers = nn.ModuleList(
[
CLIPEncoderLayer(
config=config,
norm_layer=norm_layer,
attn_implementation="sdpa",
quant_config=quant_config,
prefix=add_prefix(f"layers.{layer_idx}", prefix),
)
for layer_idx in range(num_hidden_layers)
]
)
def forward(
self,
inputs_embeds: torch.Tensor,
attention_mask: torch.Tensor = None,
causal_attention_mask: torch.Tensor = None,
return_all_hidden_states: bool = False,
) -> Union[torch.Tensor, list[torch.Tensor]]:
hidden_states_pool = [inputs_embeds]
hidden_states = inputs_embeds
for encoder_layer in self.layers:
hidden_states = encoder_layer(
hidden_states, attention_mask, causal_attention_mask
)
if return_all_hidden_states:
hidden_states_pool.append(hidden_states)
if return_all_hidden_states:
return hidden_states_pool
return hidden_states
class CLIPTextTransformer(nn.Module):
def __init__(
self,
config: CLIPTextConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = CLIPTextEmbeddings(config)
self.encoder = CLIPEncoder(
config=config,
quant_config=quant_config,
prefix=add_prefix("encoder", prefix),
)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@property
def device(self) -> torch.device:
return self.encoder.layers[0].layer_norm1.weight.device
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
):
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids, position_ids)
causal_attention_mask = _create_4d_causal_attention_mask(
input_ids.shape, hidden_states.dtype, device=hidden_states.device
)
encoder_outputs = self.encoder(
hidden_states, attention_mask, causal_attention_mask
)
last_hidden_state = self.final_layer_norm(encoder_outputs)
return last_hidden_state
class CLIPTextModel(nn.Module):
def __init__(
self,
config: CLIPTextConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.text_model = CLIPTextTransformer(
config=config,
quant_config=quant_config,
prefix=add_prefix("text_model", prefix),
)
def forward(
self,
input_ids: torch.Tensor,
position_ids: torch.Tensor,
):
return self.text_model(input_ids, position_ids)
class CLIPVisionTransformer(nn.Module):
def __init__(
self,
config: CLIPVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = CLIPVisionEmbeddings(config)
# NOTE: This typo of "layrnorm" is not fixed on purpose to match
# the original transformers code and name of the model weights.
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = CLIPEncoder(
config=config,
quant_config=quant_config,
prefix=add_prefix("encoder", prefix),
)
num_hidden_layers = config.num_hidden_layers
if len(self.encoder.layers) > config.num_hidden_layers:
raise ValueError(
f"The original encoder only has {num_hidden_layers} "
f"layers, but you requested {len(self.encoder.layers)} layers."
)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@property
def device(self) -> torch.device:
return self.encoder.layers[0].layer_norm1.weight.device
def forward(
self,
pixel_values: torch.Tensor,
) -> torch.Tensor:
hidden_states = self.embeddings(pixel_values.to(self.device))
hidden_states = self.pre_layrnorm(hidden_states)
return_all_hidden_states = False
last_hidden_state = self.encoder(
inputs_embeds=hidden_states,
return_all_hidden_states=return_all_hidden_states,
)
last_hidden_state = self.post_layernorm(last_hidden_state)
return last_hidden_state
class CLIPVisionModel(nn.Module):
def __init__(
self,
config: CLIPVisionConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.vision_model = CLIPVisionTransformer(
config, quant_config, prefix=add_prefix("vision_model", prefix)
)
def forward(self, pixel_values: torch.Tensor):
return self.vision_model(pixel_values)
class CLIPModel(nn.Module):
def __init__(
self,
config: CLIPConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
if not isinstance(config.text_config, CLIPTextConfig):
raise TypeError(
"config.text_config is expected to be of type CLIPTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, CLIPVisionConfig):
raise TypeError(
"config.vision_config is expected to be of type CLIPVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.visual_projection = nn.Linear(
self.vision_embed_dim, self.projection_dim, bias=False
)
self.text_projection = nn.Linear(
self.text_embed_dim, self.projection_dim, bias=False
)
self.logit_scale = nn.Parameter(
torch.tensor(self.config.logit_scale_init_value)
)
text_model = CLIPTextModel(
text_config, quant_config, prefix=add_prefix("text_model", prefix)
)
vision_model = CLIPVisionModel(
vision_config, quant_config, prefix=add_prefix("vision_model", prefix)
)
self.text_model = text_model.text_model
self.vision_model = vision_model.vision_model
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
monkey_patch_weight_loader()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
get_embedding: bool = True,
):
assert get_embedding, "CLIPEmbeddingModel is only used for embedding"
image_inputs = None
if forward_batch.mm_inputs is not None:
image_inputs = forward_batch.mm_inputs
if image_inputs is not None and image_inputs[0] is not None:
vision_outputs = self.vision_model(image_inputs[0].pixel_values)
pooled_output = vision_outputs[:, 0, :]
image_embeds = self.visual_projection(pooled_output)
image_embeds = nn.functional.normalize(image_embeds, p=2, dim=1)
return EmbeddingPoolerOutput(embeddings=image_embeds)
else:
text_outputs = self.text_model(input_ids, position_ids=positions)
pooled_output = self.pooler(text_outputs[0], forward_batch)
return EmbeddingPoolerOutput(
embeddings=self.text_projection(pooled_output.embeddings)
)
def pad_input_ids(self, input_ids: List[int], image_inputs: MultimodalInputs):
# Clip embeddings models handle text/image separately, so we don't need to pad input ids
return input_ids
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "position_ids" in name:
continue
if "out_proj" in name:
name = name.replace("out_proj", "proj")
for param_name, shard_name, shard_id in stacked_params_mapping:
if shard_name not in name:
continue
name = name.replace(shard_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
# monkey patch weight loader to remove open_clip file
def monkey_patch_weight_loader():
import glob
import os
from sglang.srt.model_loader.loader import DefaultModelLoader
from sglang.srt.model_loader.weight_utils import (
download_weights_from_hf,
filter_files_not_needed_for_inference,
)
def prepare_weights(
self, model_name_or_path: str, revision: Optional[str], fall_back_to_pt: bool
) -> Tuple[str, List[str], bool]:
model_name_or_path = (
self._maybe_download_from_modelscope(model_name_or_path, revision)
or model_name_or_path
)
is_local = os.path.isdir(model_name_or_path)
use_safetensors = False
allow_patterns = ["*.bin"]
if not is_local:
hf_folder = download_weights_from_hf(
model_name_or_path,
self.load_config.download_dir,
allow_patterns,
revision,
ignore_patterns=self.load_config.ignore_patterns,
)
else:
hf_folder = model_name_or_path
hf_weights_files: List[str] = []
for pattern in allow_patterns:
hf_weights_files += glob.glob(os.path.join(hf_folder, pattern))
hf_weights_files = filter_files_not_needed_for_inference(hf_weights_files)
# remove open_clip file
hf_weights_files = [
file for file in hf_weights_files if "open_clip" not in file
]
if len(hf_weights_files) == 0:
raise RuntimeError(
f"Cannot find any model weights with `{model_name_or_path}`"
)
return hf_folder, hf_weights_files, use_safetensors
setattr(DefaultModelLoader, "_prepare_weights", prepare_weights)
EntryClass = CLIPModel