418 lines
15 KiB
Python
418 lines
15 KiB
Python
# Copyright 2023-2024 SGLang Team
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
# Copyright 2024 Cohere and the HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
# and OPT implementations in this library. It has been modified from its
|
|
# original forms to accommodate minor architectural differences compared
|
|
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
# Adapted from
|
|
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/commandr.py#L1
|
|
|
|
# This file is based on the LLama model definition file in transformers
|
|
"""PyTorch Cohere model."""
|
|
|
|
from typing import Iterable, Optional, Tuple
|
|
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch import nn
|
|
from torch.nn.parameter import Parameter
|
|
from transformers import PretrainedConfig
|
|
|
|
from sglang.srt.distributed import (
|
|
get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
)
|
|
from sglang.srt.layers.activation import SiluAndMul
|
|
from sglang.srt.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
|
from sglang.srt.layers.radix_attention import RadixAttention
|
|
from sglang.srt.layers.rotary_embedding import get_rope
|
|
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
|
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
|
from sglang.srt.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from sglang.srt.utils import add_prefix, get_compiler_backend, set_weight_attrs
|
|
|
|
|
|
@torch.compile(backend=get_compiler_backend())
|
|
def layer_norm_func(hidden_states, weight, variance_epsilon):
|
|
input_dtype = hidden_states.dtype
|
|
hidden_states = hidden_states.to(torch.float32)
|
|
mean = hidden_states.mean(-1, keepdim=True)
|
|
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
|
|
hidden_states = (hidden_states - mean) * torch.rsqrt(variance + variance_epsilon)
|
|
hidden_states = weight.to(torch.float32) * hidden_states
|
|
return hidden_states.to(input_dtype)
|
|
|
|
|
|
class LayerNorm(nn.Module):
|
|
def __init__(self, param_shape=None, eps=1e-5):
|
|
super().__init__()
|
|
self.weight = nn.Parameter(torch.ones(param_shape))
|
|
self.variance_epsilon = eps
|
|
set_weight_attrs(self.weight, {"weight_loader": self.weight_loader})
|
|
|
|
def forward(self, hidden_states, residuals=None):
|
|
hidden_states = layer_norm_func(
|
|
hidden_states, self.weight, self.variance_epsilon
|
|
)
|
|
return hidden_states, residuals
|
|
|
|
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
shard_dim = 0 if param.dim() != 1 else None
|
|
param_data = param.data
|
|
if shard_dim is not None:
|
|
shard_size = param_data.shape[shard_dim]
|
|
start_idx = tp_rank * shard_size
|
|
loaded_weight = loaded_weight.narrow(shard_dim, start_idx, shard_size)
|
|
assert param_data.shape == loaded_weight.shape
|
|
param_data.copy_(loaded_weight)
|
|
|
|
|
|
# Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere
|
|
class CohereMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.hidden_size = config.hidden_size
|
|
self.intermediate_size = config.intermediate_size
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
self.hidden_size,
|
|
[self.intermediate_size] * 2,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("gate_up_proj", prefix),
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
self.intermediate_size,
|
|
self.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("down_proj", prefix),
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x):
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
class CohereAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
layer_id: int = 0,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.config = config
|
|
self.attention_dropout = config.attention_dropout
|
|
self.hidden_size = config.hidden_size
|
|
self.total_num_heads = config.num_attention_heads
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.head_dim = self.hidden_size // self.total_num_heads
|
|
self.total_num_kv_heads = config.num_key_value_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.max_position_embeddings = getattr(
|
|
config, "model_max_length", None
|
|
) or getattr(config, "max_position_embeddings", 8192)
|
|
self.rope_theta = config.rope_theta
|
|
self.rope_scaling = getattr(config, "rope_scaling", None)
|
|
self.use_qk_norm = getattr(config, "use_qk_norm", False)
|
|
self.qkv_proj = QKVParallelLinear(
|
|
self.hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("qkv_proj", prefix),
|
|
)
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
self.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("o_proj", prefix),
|
|
)
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=self.max_position_embeddings,
|
|
base=self.rope_theta,
|
|
rope_scaling=self.rope_scaling,
|
|
is_neox_style=False,
|
|
)
|
|
self.attn = RadixAttention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
layer_id=layer_id,
|
|
prefix=add_prefix("attn", prefix),
|
|
)
|
|
if self.use_qk_norm:
|
|
self.q_norm = LayerNorm(
|
|
param_shape=(self.num_heads, self.head_dim), eps=config.layer_norm_eps
|
|
)
|
|
self.k_norm = LayerNorm(
|
|
param_shape=(self.num_kv_heads, self.head_dim),
|
|
eps=config.layer_norm_eps,
|
|
)
|
|
|
|
def _apply_qk_norm(self, q, k):
|
|
q = q.view(*q.shape[:-1], -1, self.head_dim)
|
|
k = k.view(*k.shape[:-1], -1, self.head_dim)
|
|
q, _ = self.q_norm(q)
|
|
k, _ = self.k_norm(k)
|
|
q = q.view(*q.shape[:-2], -1)
|
|
k = k.view(*k.shape[:-2], -1)
|
|
return q, k
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
if self.use_qk_norm:
|
|
q, k = self._apply_qk_norm(q, k)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v, forward_batch)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class CohereDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
layer_id: int = 0,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
|
|
self.self_attn = CohereAttention(
|
|
config,
|
|
layer_id=layer_id,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("self_attn", prefix),
|
|
)
|
|
|
|
self.mlp = CohereMLP(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("mlp", prefix),
|
|
)
|
|
self.input_layernorm = LayerNorm(
|
|
param_shape=(config.hidden_size), eps=config.layer_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
residual: Optional[torch.Tensor],
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
# Self Attention
|
|
residual = hidden_states
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
hidden_states_attention = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
forward_batch=forward_batch,
|
|
)
|
|
hidden_states_mlp = self.mlp(hidden_states)
|
|
# Add everything together
|
|
hidden_states = residual + hidden_states_attention + hidden_states_mlp
|
|
|
|
return hidden_states, residual
|
|
|
|
|
|
class CohereModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.vocab_size = config.vocab_size
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size, config.hidden_size
|
|
)
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
CohereDecoderLayer(
|
|
config,
|
|
i,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix(f"layers.{i}", prefix),
|
|
)
|
|
for i in range(config.num_hidden_layers)
|
|
]
|
|
)
|
|
self.norm = LayerNorm(
|
|
param_shape=(config.hidden_size), eps=config.layer_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.embed_tokens(input_ids)
|
|
residual = None
|
|
for i in range(len(self.layers)):
|
|
layer = self.layers[i]
|
|
hidden_states, residual = layer(
|
|
positions,
|
|
hidden_states,
|
|
forward_batch,
|
|
residual,
|
|
)
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
class CohereForCausalLM(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.logits_processor = LogitsProcessor(config)
|
|
self.model = CohereModel(
|
|
config, quant_config, prefix=add_prefix("model", prefix)
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(
|
|
input_ids,
|
|
positions,
|
|
forward_batch,
|
|
)
|
|
return self.logits_processor(
|
|
input_ids, hidden_states, self.model.embed_tokens, forward_batch
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params = set()
|
|
for name, loaded_weight in weights:
|
|
for param_name, shard_name, shard_id in stacked_params_mapping:
|
|
if shard_name not in name:
|
|
continue
|
|
name = name.replace(shard_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# lm_head is not used in vllm as it is tied with embed_token.
|
|
# To prevent errors, skip loading lm_head.weight.
|
|
if "lm_head.weight" in name:
|
|
continue
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Remapping the name of FP8 kv-scale.
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
|
|
|
|
class Cohere2ForCausalLM(CohereForCausalLM):
|
|
pass
|
|
|
|
|
|
EntryClass = [CohereForCausalLM, Cohere2ForCausalLM]
|