sglang0.4.5.post1/python/sglang/srt/models/commandr.py

418 lines
15 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Copyright 2024 Cohere and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Adapted from
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/commandr.py#L1
# This file is based on the LLama model definition file in transformers
"""PyTorch Cohere model."""
from typing import Iterable, Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn.parameter import Parameter
from transformers import PretrainedConfig
from sglang.srt.distributed import (
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
)
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from sglang.srt.utils import add_prefix, get_compiler_backend, set_weight_attrs
@torch.compile(backend=get_compiler_backend())
def layer_norm_func(hidden_states, weight, variance_epsilon):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
mean = hidden_states.mean(-1, keepdim=True)
variance = (hidden_states - mean).pow(2).mean(-1, keepdim=True)
hidden_states = (hidden_states - mean) * torch.rsqrt(variance + variance_epsilon)
hidden_states = weight.to(torch.float32) * hidden_states
return hidden_states.to(input_dtype)
class LayerNorm(nn.Module):
def __init__(self, param_shape=None, eps=1e-5):
super().__init__()
self.weight = nn.Parameter(torch.ones(param_shape))
self.variance_epsilon = eps
set_weight_attrs(self.weight, {"weight_loader": self.weight_loader})
def forward(self, hidden_states, residuals=None):
hidden_states = layer_norm_func(
hidden_states, self.weight, self.variance_epsilon
)
return hidden_states, residuals
def weight_loader(self, param: Parameter, loaded_weight: torch.Tensor):
tp_rank = get_tensor_model_parallel_rank()
shard_dim = 0 if param.dim() != 1 else None
param_data = param.data
if shard_dim is not None:
shard_size = param_data.shape[shard_dim]
start_idx = tp_rank * shard_size
loaded_weight = loaded_weight.narrow(shard_dim, start_idx, shard_size)
assert param_data.shape == loaded_weight.shape
param_data.copy_(loaded_weight)
# Copied from transformers.models.llama.modeling_llama.LlamaMLP Llama->Cohere
class CohereMLP(nn.Module):
def __init__(
self,
config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_up_proj = MergedColumnParallelLinear(
self.hidden_size,
[self.intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=add_prefix("gate_up_proj", prefix),
)
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=add_prefix("down_proj", prefix),
)
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class CohereAttention(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
tp_size = get_tensor_model_parallel_world_size()
self.config = config
self.attention_dropout = config.attention_dropout
self.hidden_size = config.hidden_size
self.total_num_heads = config.num_attention_heads
self.num_heads = self.total_num_heads // tp_size
self.head_dim = self.hidden_size // self.total_num_heads
self.total_num_kv_heads = config.num_key_value_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.max_position_embeddings = getattr(
config, "model_max_length", None
) or getattr(config, "max_position_embeddings", 8192)
self.rope_theta = config.rope_theta
self.rope_scaling = getattr(config, "rope_scaling", None)
self.use_qk_norm = getattr(config, "use_qk_norm", False)
self.qkv_proj = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=add_prefix("qkv_proj", prefix),
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=add_prefix("o_proj", prefix),
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_theta,
rope_scaling=self.rope_scaling,
is_neox_style=False,
)
self.attn = RadixAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
layer_id=layer_id,
prefix=add_prefix("attn", prefix),
)
if self.use_qk_norm:
self.q_norm = LayerNorm(
param_shape=(self.num_heads, self.head_dim), eps=config.layer_norm_eps
)
self.k_norm = LayerNorm(
param_shape=(self.num_kv_heads, self.head_dim),
eps=config.layer_norm_eps,
)
def _apply_qk_norm(self, q, k):
q = q.view(*q.shape[:-1], -1, self.head_dim)
k = k.view(*k.shape[:-1], -1, self.head_dim)
q, _ = self.q_norm(q)
k, _ = self.k_norm(k)
q = q.view(*q.shape[:-2], -1)
k = k.view(*k.shape[:-2], -1)
return q, k
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
if self.use_qk_norm:
q, k = self._apply_qk_norm(q, k)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, forward_batch)
output, _ = self.o_proj(attn_output)
return output
class CohereDecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = CohereAttention(
config,
layer_id=layer_id,
quant_config=quant_config,
prefix=add_prefix("self_attn", prefix),
)
self.mlp = CohereMLP(
config,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
self.input_layernorm = LayerNorm(
param_shape=(config.hidden_size), eps=config.layer_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
residual = hidden_states
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states_attention = self.self_attn(
positions=positions,
hidden_states=hidden_states,
forward_batch=forward_batch,
)
hidden_states_mlp = self.mlp(hidden_states)
# Add everything together
hidden_states = residual + hidden_states_attention + hidden_states_mlp
return hidden_states, residual
class CohereModel(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size, config.hidden_size
)
self.layers = nn.ModuleList(
[
CohereDecoderLayer(
config,
i,
quant_config=quant_config,
prefix=add_prefix(f"layers.{i}", prefix),
)
for i in range(config.num_hidden_layers)
]
)
self.norm = LayerNorm(
param_shape=(config.hidden_size), eps=config.layer_norm_eps
)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
hidden_states = self.embed_tokens(input_ids)
residual = None
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
forward_batch,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class CohereForCausalLM(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.logits_processor = LogitsProcessor(config)
self.model = CohereModel(
config, quant_config, prefix=add_prefix("model", prefix)
)
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
hidden_states = self.model(
input_ids,
positions,
forward_batch,
)
return self.logits_processor(
input_ids, hidden_states, self.model.embed_tokens, forward_batch
)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params = set()
for name, loaded_weight in weights:
for param_name, shard_name, shard_id in stacked_params_mapping:
if shard_name not in name:
continue
name = name.replace(shard_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# lm_head is not used in vllm as it is tied with embed_token.
# To prevent errors, skip loading lm_head.weight.
if "lm_head.weight" in name:
continue
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
class Cohere2ForCausalLM(CohereForCausalLM):
pass
EntryClass = [CohereForCausalLM, Cohere2ForCausalLM]