454 lines
15 KiB
Python
454 lines
15 KiB
Python
# Copyright 2023-2024 SGLang Team
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
# Adapted from:
|
|
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/dbrx.py#L1
|
|
|
|
from typing import Iterable, Optional, Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from sglang.srt.configs import DbrxConfig
|
|
from sglang.srt.distributed import (
|
|
get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_reduce,
|
|
)
|
|
from sglang.srt.layers.linear import (
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
|
from sglang.srt.layers.moe.fused_moe_triton import fused_moe
|
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
|
from sglang.srt.layers.radix_attention import RadixAttention
|
|
from sglang.srt.layers.rotary_embedding import get_rope
|
|
from sglang.srt.layers.vocab_parallel_embedding import (
|
|
DEFAULT_VOCAB_PADDING_SIZE,
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
|
from sglang.srt.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from sglang.srt.utils import add_prefix, set_weight_attrs
|
|
|
|
|
|
class DbrxRouter(nn.Module):
|
|
"""A Router implementation for DBRX that returns logits for each expert
|
|
per token.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: DbrxConfig,
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.num_total_experts = config.ffn_config.moe_num_experts
|
|
self.d_model = config.d_model
|
|
self.layer = ReplicatedLinear(
|
|
self.d_model,
|
|
self.num_total_experts,
|
|
bias=False,
|
|
params_dtype=params_dtype,
|
|
quant_config=None,
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
router_logits, _ = self.layer(hidden_states)
|
|
return router_logits
|
|
|
|
|
|
class DbrxExperts(nn.Module):
|
|
"""A tensor-parallel MoE implementation for DBRX.
|
|
|
|
Each expert's weights are sharded across all ranks and a fused MoE
|
|
kernel is used for the forward pass, and finally we reduce the outputs
|
|
across ranks.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: DbrxConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
params_dtype: Optional[torch.dtype] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.num_total_experts = config.ffn_config.moe_num_experts
|
|
self.top_k = config.ffn_config.moe_top_k
|
|
self.d_model = config.d_model
|
|
self.intermediate_size = config.ffn_config.ffn_hidden_size // self.tp_size
|
|
|
|
if params_dtype is None:
|
|
params_dtype = torch.get_default_dtype()
|
|
self.params_dtype = params_dtype
|
|
|
|
self.router = DbrxRouter(config, self.params_dtype)
|
|
self.ws = nn.Parameter(
|
|
torch.empty(
|
|
self.num_total_experts,
|
|
2 * self.intermediate_size,
|
|
self.d_model,
|
|
device="cuda",
|
|
dtype=self.params_dtype,
|
|
)
|
|
)
|
|
self.w2s = nn.Parameter(
|
|
torch.empty(
|
|
self.num_total_experts,
|
|
self.d_model,
|
|
self.intermediate_size,
|
|
device="cuda",
|
|
dtype=self.params_dtype,
|
|
)
|
|
)
|
|
|
|
set_weight_attrs(
|
|
self.ws,
|
|
{
|
|
"weight_loader": self.weight_loader,
|
|
},
|
|
)
|
|
set_weight_attrs(
|
|
self.w2s,
|
|
{
|
|
"weight_loader": self.weight_loader,
|
|
},
|
|
)
|
|
|
|
def weight_loader(
|
|
self, param: nn.Parameter, loaded_weight: torch.Tensor, weight_name: str
|
|
):
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
param_data = param.data
|
|
shard_size = self.intermediate_size
|
|
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
|
|
# DBRX uses GLU for each experts.
|
|
# GLU has 3 linear layers: w1, v1 and w2.
|
|
if weight_name.endswith("w1"):
|
|
loaded_weight = torch.reshape(
|
|
loaded_weight,
|
|
[-1, self.intermediate_size * self.tp_size, self.d_model],
|
|
)
|
|
param_data[:, 0:shard_size, :] = loaded_weight[:, shard, :]
|
|
if weight_name.endswith("v1"):
|
|
loaded_weight = torch.reshape(
|
|
loaded_weight,
|
|
[-1, self.intermediate_size * self.tp_size, self.d_model],
|
|
)
|
|
param_data[:, shard_size : 2 * shard_size, :] = loaded_weight[:, shard, :]
|
|
if weight_name.endswith("w2"):
|
|
loaded_weight = torch.reshape(
|
|
loaded_weight,
|
|
[-1, self.intermediate_size * self.tp_size, self.d_model],
|
|
).transpose(1, 2)
|
|
param_data[:] = loaded_weight[:, :, shard]
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
num_tokens, hidden_size = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, self.d_model)
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits = self.router(hidden_states)
|
|
final_hidden_states = fused_moe(
|
|
hidden_states,
|
|
self.ws,
|
|
self.w2s,
|
|
router_logits,
|
|
self.top_k,
|
|
renormalize=True,
|
|
inplace=True,
|
|
)
|
|
|
|
if self.tp_size > 1:
|
|
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
|
|
|
|
return final_hidden_states.view(num_tokens, hidden_size)
|
|
|
|
|
|
class DbrxAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: DbrxConfig,
|
|
layer_id: int = 0,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.d_model = config.d_model
|
|
self.total_num_heads = config.n_heads
|
|
self.head_dim = self.d_model // self.total_num_heads
|
|
self.total_num_kv_heads = config.attn_config.kv_n_heads
|
|
self.clip_qkv = config.attn_config.clip_qkv
|
|
self.rope_theta = config.attn_config.rope_theta
|
|
self.max_position = config.max_seq_len
|
|
|
|
# pylint: disable=invalid-name
|
|
self.Wqkv = QKVParallelLinear(
|
|
self.d_model,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("Wqkv", prefix),
|
|
)
|
|
self.out_proj = RowParallelLinear(
|
|
self.d_model,
|
|
self.d_model,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("out_proj", prefix),
|
|
)
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=self.max_position,
|
|
base=int(self.rope_theta),
|
|
is_neox_style=True,
|
|
)
|
|
|
|
tp_world_size = get_tensor_model_parallel_world_size()
|
|
self.tp_size = tp_world_size
|
|
assert self.total_num_heads % tp_world_size == 0
|
|
self.num_heads = self.total_num_heads // tp_world_size
|
|
if self.total_num_kv_heads >= tp_world_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_world_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_world_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_world_size)
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.attn = RadixAttention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
layer_id=layer_id,
|
|
prefix=add_prefix("attn", prefix),
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.Wqkv(hidden_states)
|
|
if self.clip_qkv is not None:
|
|
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(position_ids, q, k)
|
|
attn_output = self.attn(q, k, v, forward_batch)
|
|
hidden_states, _ = self.out_proj(attn_output)
|
|
return hidden_states
|
|
|
|
|
|
class DbrxFusedNormAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: DbrxConfig,
|
|
layer_id: int = 0,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.d_model = config.d_model
|
|
self.attn = DbrxAttention(
|
|
config,
|
|
layer_id,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("attn", prefix),
|
|
)
|
|
self.norm_1 = nn.LayerNorm(self.d_model)
|
|
self.norm_2 = nn.LayerNorm(self.d_model)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
residual = hidden_states
|
|
hidden_states = self.norm_1(hidden_states)
|
|
x = self.attn(
|
|
position_ids=position_ids,
|
|
hidden_states=hidden_states,
|
|
forward_batch=forward_batch,
|
|
)
|
|
hidden_states = residual + x
|
|
residual = hidden_states
|
|
hidden_states = self.norm_2(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
class DbrxBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: DbrxConfig,
|
|
layer_id: int = 0,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.norm_attn_norm = DbrxFusedNormAttention(
|
|
config,
|
|
layer_id,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("norm_attn_norm", prefix),
|
|
)
|
|
self.ffn = DbrxExperts(config, quant_config=quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
position_ids: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
hidden_states, residual = self.norm_attn_norm(
|
|
position_ids=position_ids,
|
|
hidden_states=hidden_states,
|
|
forward_batch=forward_batch,
|
|
)
|
|
hidden_states = self.ffn(hidden_states)
|
|
hidden_states = hidden_states + residual
|
|
return hidden_states
|
|
|
|
|
|
class DbrxModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: DbrxConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.wte = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.d_model,
|
|
)
|
|
self.blocks = nn.ModuleList(
|
|
[
|
|
DbrxBlock(
|
|
config,
|
|
i,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix(f"blocks.{i}", prefix),
|
|
)
|
|
for i in range(config.n_layers)
|
|
]
|
|
)
|
|
self.norm_f = nn.LayerNorm(config.d_model, eps=1e-5)
|
|
for module in self.modules():
|
|
if hasattr(module, "bias") and isinstance(module.bias, nn.Parameter):
|
|
# Remove the bias term in Linear and LayerNorm.
|
|
module.register_parameter("bias", None)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
position_ids: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
input_embeds: torch.Tensor = None,
|
|
) -> torch.Tensor:
|
|
if input_embeds is None:
|
|
hidden_states = self.wte(input_ids)
|
|
else:
|
|
hidden_states = input_embeds
|
|
for i in range(len(self.blocks)):
|
|
block = self.blocks[i]
|
|
hidden_states = block(position_ids, hidden_states, forward_batch)
|
|
hidden_states = self.norm_f(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class DbrxForCausalLM(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: DbrxConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.unpadded_vocab_size = config.vocab_size
|
|
self.transformer = DbrxModel(
|
|
config, quant_config=quant_config, prefix=add_prefix("transformer", prefix)
|
|
)
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.d_model,
|
|
org_num_embeddings=config.vocab_size,
|
|
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
|
|
prefix=add_prefix("lm_head", prefix),
|
|
)
|
|
self.logits_processor = LogitsProcessor(config)
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.transformer(input_ids, positions, forward_batch)
|
|
return self.logits_processor(
|
|
input_ids, hidden_states, self.lm_head, forward_batch
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
expert_params_mapping = [
|
|
(
|
|
"ws" if weight_name in ["w1", "v1"] else "w2s",
|
|
f"experts.mlp.{weight_name}",
|
|
)
|
|
for weight_name in ["w1", "v1", "w2"]
|
|
]
|
|
params_dict = dict(self.named_parameters(remove_duplicate=False))
|
|
for name, loaded_weight in weights:
|
|
for param_name, weight_name in expert_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, weight_name)
|
|
break
|
|
else:
|
|
# Remapping the name of FP8 kv-scale.
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
|
|
|
|
EntryClass = DbrxForCausalLM
|