475 lines
16 KiB
Python
475 lines
16 KiB
Python
# Copyright 2023-2024 SGLang Team
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
# Adapted from:
|
|
# https://github.com/vllm-project/vllm/blob/14f91fe67c2342f2fe859dc6a5c40810df0e1c61/vllm/model_executor/models/deepseek.py
|
|
"""Inference-only Deepseek model."""
|
|
|
|
from typing import Any, Dict, Iterable, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from sglang.srt.distributed import (
|
|
get_tensor_model_parallel_rank,
|
|
get_tensor_model_parallel_world_size,
|
|
tensor_model_parallel_all_reduce,
|
|
)
|
|
from sglang.srt.layers.activation import SiluAndMul
|
|
from sglang.srt.layers.layernorm import RMSNorm
|
|
from sglang.srt.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
|
from sglang.srt.layers.moe.fused_moe_triton import fused_moe
|
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
|
from sglang.srt.layers.radix_attention import RadixAttention
|
|
from sglang.srt.layers.rotary_embedding import get_rope
|
|
from sglang.srt.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
|
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
|
from sglang.srt.utils import add_prefix
|
|
|
|
|
|
class DeepseekMLP(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
reduce_results: bool = True,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size,
|
|
[intermediate_size] * 2,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("gate_up_proj", prefix),
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
reduce_results=reduce_results,
|
|
prefix=add_prefix("down_proj", prefix),
|
|
)
|
|
if hidden_act != "silu":
|
|
raise ValueError(
|
|
f"Unsupported activation: {hidden_act}. "
|
|
"Only silu is supported for now."
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x):
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
class DeepseekMoE(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.rank = get_tensor_model_parallel_rank()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.n_routed_experts = config.n_routed_experts
|
|
self.top_k = config.num_experts_per_tok
|
|
if self.tp_size > self.n_routed_experts:
|
|
raise ValueError(
|
|
f"Tensor parallel size {self.tp_size} is greater than "
|
|
f"the number of experts {self.n_routed_experts}."
|
|
)
|
|
|
|
self.experts = nn.ModuleList(
|
|
[
|
|
DeepseekMLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.moe_intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
reduce_results=False,
|
|
prefix=add_prefix(f"{idx}.experts", prefix),
|
|
)
|
|
for idx in range(self.n_routed_experts)
|
|
]
|
|
)
|
|
self.pack_params()
|
|
|
|
self.gate = ReplicatedLinear(
|
|
config.hidden_size,
|
|
self.n_routed_experts,
|
|
bias=False,
|
|
quant_config=None,
|
|
prefix=add_prefix("gate", prefix),
|
|
)
|
|
|
|
if config.n_shared_experts is not None:
|
|
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
|
|
self.shared_experts = DeepseekMLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
reduce_results=False,
|
|
prefix=add_prefix("shared_experts", prefix),
|
|
)
|
|
|
|
def pack_params(self):
|
|
w1 = []
|
|
w2 = []
|
|
for expert in self.experts:
|
|
w1.append(expert.gate_up_proj.weight)
|
|
w2.append(expert.down_proj.weight)
|
|
self.w1 = torch._utils._flatten_dense_tensors(w1)
|
|
w1s = torch._utils._unflatten_dense_tensors(self.w1, w1)
|
|
for data, param in zip(w1s, w1):
|
|
param.data = data
|
|
self.w1 = self.w1.view(len(w1), *w1s[0].shape)
|
|
|
|
self.w2 = torch._utils._flatten_dense_tensors(w2)
|
|
w2s = torch._utils._unflatten_dense_tensors(self.w2, w2)
|
|
for data, param in zip(w2s, w2):
|
|
param.data = data
|
|
|
|
self.w2 = self.w2.view(len(w2), *w2s[0].shape)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
num_tokens, hidden_dim = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
if self.config.n_shared_experts is not None:
|
|
shared_output = self.shared_experts(hidden_states)
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits, _ = self.gate(hidden_states)
|
|
final_hidden_states = fused_moe(
|
|
hidden_states,
|
|
self.w1,
|
|
self.w2,
|
|
router_logits,
|
|
self.top_k,
|
|
renormalize=self.config.norm_topk_prob,
|
|
inplace=True,
|
|
)
|
|
|
|
if self.config.n_shared_experts is not None:
|
|
final_hidden_states = final_hidden_states + shared_output
|
|
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
|
|
|
|
return final_hidden_states.view(num_tokens, hidden_dim)
|
|
|
|
|
|
class DeepseekAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
layer_id: int = 0,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: Optional[Dict[str, Any]] = None,
|
|
max_position_embeddings: int = 8192,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = hidden_size // self.total_num_heads
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.rope_theta = rope_theta
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("qkv_proj", prefix),
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("o_proj", prefix),
|
|
)
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
base=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
)
|
|
self.attn = RadixAttention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
layer_id=layer_id,
|
|
prefix=add_prefix("attn", prefix),
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v, forward_batch)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class DeepseekDecoderLayer(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
layer_id: int,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
|
|
self.self_attn = DeepseekAttention(
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
layer_id=layer_id,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
max_position_embeddings=max_position_embeddings,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("self_attn", prefix),
|
|
)
|
|
if (
|
|
config.n_routed_experts is not None
|
|
and layer_id >= config.first_k_dense_replace
|
|
and layer_id % config.moe_layer_freq == 0
|
|
):
|
|
self.mlp = DeepseekMoE(
|
|
config=config,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("mlp", prefix),
|
|
)
|
|
else:
|
|
self.mlp = DeepseekMLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("mlp", prefix),
|
|
)
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
residual: Optional[torch.Tensor],
|
|
) -> torch.Tensor:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
forward_batch=forward_batch,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
|
|
hidden_states = self.mlp(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
class DeepseekModel(nn.Module):
|
|
|
|
fall_back_to_pt_during_load = False
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.padding_idx = config.pad_token_id
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
DeepseekDecoderLayer(
|
|
config,
|
|
layer_id,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix(f"layers.{layer_id}", prefix),
|
|
)
|
|
for layer_id in range(config.num_hidden_layers)
|
|
]
|
|
)
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.embed_tokens(input_ids)
|
|
residual = None
|
|
for i in range(len(self.layers)):
|
|
layer = self.layers[i]
|
|
hidden_states, residual = layer(
|
|
positions, hidden_states, forward_batch, residual
|
|
)
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
class DeepseekForCausalLM(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.model = DeepseekModel(
|
|
config, quant_config, prefix=add_prefix("model", prefix)
|
|
)
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("lm_head", prefix),
|
|
)
|
|
self.logits_processor = LogitsProcessor(config)
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(input_ids, positions, forward_batch)
|
|
return self.logits_processor(
|
|
input_ids, hidden_states, self.lm_head, forward_batch
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Skip experts that are not assigned to this worker.
|
|
if (
|
|
"mlp.experts." in name or "mlp.shared_experts." in name
|
|
) and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Skip experts that are not assigned to this worker.
|
|
if (
|
|
"mlp.experts." in name or "mlp.shared_experts." in name
|
|
) and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
|
|
|
|
EntryClass = DeepseekForCausalLM
|