sglang0.4.5.post1/python/sglang/srt/models/deepseek_nextn.py

341 lines
13 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Inference-only DeepSeek NextN Speculative Decoding."""
from typing import Iterable, Optional, Tuple
import torch
from torch import nn
from transformers import PretrainedConfig
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import ReplicatedLinear
from sglang.srt.layers.logits_processor import LogitsProcessor
from sglang.srt.layers.moe.ep_moe.layer import EPMoE
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.quantization.fp8_utils import (
block_quant_to_tensor_quant,
normalize_e4m3fn_to_e4m3fnuz,
)
from sglang.srt.layers.quantization.int8_utils import (
block_dequant as int8_block_dequant,
)
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.managers.schedule_batch import global_server_args_dict
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.deepseek_v2 import DeepseekV2DecoderLayer, DeepseekV3ForCausalLM
from sglang.srt.utils import add_prefix, is_cuda, is_hip
_is_hip = is_hip()
_is_cuda = is_cuda()
if _is_cuda:
from sgl_kernel import awq_dequantize
else:
from vllm import _custom_ops as ops
class DeepseekModelNextN(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
enable_tp=not global_server_args_dict["enable_dp_attention"],
prefix=add_prefix("embed_tokens", prefix),
)
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.eh_proj = nn.Linear(2 * config.hidden_size, config.hidden_size, bias=False)
self.decoder = DeepseekV2DecoderLayer(
config,
0,
quant_config=quant_config,
is_nextn=True,
prefix=add_prefix("decoder", prefix),
)
self.shared_head = nn.Module()
self.shared_head.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
) -> torch.Tensor:
if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds
hidden_states = self.eh_proj(
torch.cat(
(
self.enorm(hidden_states),
self.hnorm(forward_batch.spec_info.hidden_states),
),
dim=-1,
)
)
residual = None
hidden_states, residual = self.decoder(
positions, hidden_states, forward_batch, residual
)
if not forward_batch.forward_mode.is_idle():
hidden_states, _ = self.shared_head.norm(hidden_states, residual)
return hidden_states
class DeepseekV3ForCausalLMNextN(DeepseekV3ForCausalLM):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
nn.Module.__init__(self)
self.config = config
self.quant_config = quant_config
self.model = DeepseekModelNextN(
config, quant_config, prefix=add_prefix("model", prefix)
)
if global_server_args_dict["enable_dp_attention"]:
self.lm_head = ReplicatedLinear(
config.hidden_size,
config.vocab_size,
bias=False,
prefix=add_prefix("model.shared_head.head", prefix),
)
self.logits_processor = LogitsProcessor(config, skip_all_gather=True)
else:
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("model.shared_head.head", prefix),
)
self.logits_processor = LogitsProcessor(config)
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
hidden_states = self.model(input_ids, positions, forward_batch)
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
if hasattr(self.config, "num_nextn_predict_layers"):
num_nextn_layers = self.config.num_nextn_predict_layers
assert num_nextn_layers == 1, "Only 1 nextn layer is supportted"
assert num_nextn_layers == self.config.num_hidden_layers
else:
raise ValueError("num_nextn_predict_layers is not in the config")
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
MoEImpl = EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE
expert_params_mapping = MoEImpl.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.n_routed_experts,
)
nextn_layer_prefix = "model.layers.0"
nextn_spec_weight_names = [
"shared_head.norm",
"eh_proj",
"enorm",
"hnorm",
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if not name.startswith(nextn_layer_prefix):
continue
# Use shared head and embed weights from target model
if "shared_head.head" in name or "embed_tokens" in name:
continue
is_decoder = True
# For nextn specific weights
for weight_name in nextn_spec_weight_names:
if weight_name in name:
name = name.replace(nextn_layer_prefix, "model")
is_decoder = False
break
# For decoder layer weights
if is_decoder:
name = name.replace(nextn_layer_prefix, "model.decoder")
if "rotary_emb.inv_freq" in name:
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if ("mlp.experts." in name) and name not in params_dict:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
if not global_server_args_dict["disable_mla"]:
self_attn = self.model.decoder.self_attn
if hasattr(self_attn.kv_b_proj, "qweight"):
# AWQ compatible
if _is_cuda:
w = awq_dequantize(
self_attn.kv_b_proj.qweight,
self_attn.kv_b_proj.scales,
self_attn.kv_b_proj.qzeros,
).T
else:
w = ops.awq_dequantize(
self_attn.kv_b_proj.qweight,
self_attn.kv_b_proj.scales,
self_attn.kv_b_proj.qzeros,
0,
0,
0,
).T
else:
w = self_attn.kv_b_proj.weight
# NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
# This may affect the accuracy of fp8 model.
if hasattr(self.quant_config, "weight_block_size") and w.dtype in (
torch.float8_e4m3fn,
torch.float8_e4m3fnuz,
):
weight_block_size = self.quant_config.weight_block_size
if weight_block_size is not None:
assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
if _is_hip:
weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
weight=w,
weight_scale=self_attn.kv_b_proj.weight_scale_inv,
input_scale=None,
)
else:
weight = w
weight_scale = self_attn.kv_b_proj.weight_scale_inv
w, scale = block_quant_to_tensor_quant(
weight, weight_scale, weight_block_size
)
self_attn.w_scale = scale
if w.dtype == torch.int8:
if hasattr(self.quant_config, "weight_block_size"):
# block-wise int8 need it
weight_block_size = self.quant_config.weight_block_size
if weight_block_size is not None:
assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
weight = w
weight_scale = self_attn.kv_b_proj.weight_scale_inv
w = int8_block_dequant(
weight, weight_scale, weight_block_size
).to(torch.bfloat16)
else:
# channel-wise int8 need it
assert hasattr(self_attn.kv_b_proj, "weight_scale")
w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
torch.bfloat16
)
w_kc, w_vc = w.unflatten(
0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
if (
hasattr(self_attn.kv_b_proj, "weight_scale")
and self_attn.w_scale is None
):
self_attn.w_scale = self_attn.kv_b_proj.weight_scale
if _is_hip:
self_attn.w_scale *= 2.0
EntryClass = [DeepseekV3ForCausalLMNextN]