341 lines
13 KiB
Python
341 lines
13 KiB
Python
# Copyright 2023-2024 SGLang Team
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
"""Inference-only DeepSeek NextN Speculative Decoding."""
|
|
from typing import Iterable, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from sglang.srt.layers.layernorm import RMSNorm
|
|
from sglang.srt.layers.linear import ReplicatedLinear
|
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
|
from sglang.srt.layers.moe.ep_moe.layer import EPMoE
|
|
from sglang.srt.layers.moe.fused_moe_triton import FusedMoE
|
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
|
from sglang.srt.layers.quantization.fp8_utils import (
|
|
block_quant_to_tensor_quant,
|
|
normalize_e4m3fn_to_e4m3fnuz,
|
|
)
|
|
from sglang.srt.layers.quantization.int8_utils import (
|
|
block_dequant as int8_block_dequant,
|
|
)
|
|
from sglang.srt.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from sglang.srt.managers.schedule_batch import global_server_args_dict
|
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
|
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
|
from sglang.srt.models.deepseek_v2 import DeepseekV2DecoderLayer, DeepseekV3ForCausalLM
|
|
from sglang.srt.utils import add_prefix, is_cuda, is_hip
|
|
|
|
_is_hip = is_hip()
|
|
_is_cuda = is_cuda()
|
|
|
|
if _is_cuda:
|
|
from sgl_kernel import awq_dequantize
|
|
else:
|
|
from vllm import _custom_ops as ops
|
|
|
|
|
|
class DeepseekModelNextN(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
enable_tp=not global_server_args_dict["enable_dp_attention"],
|
|
prefix=add_prefix("embed_tokens", prefix),
|
|
)
|
|
|
|
self.enorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.hnorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
self.eh_proj = nn.Linear(2 * config.hidden_size, config.hidden_size, bias=False)
|
|
|
|
self.decoder = DeepseekV2DecoderLayer(
|
|
config,
|
|
0,
|
|
quant_config=quant_config,
|
|
is_nextn=True,
|
|
prefix=add_prefix("decoder", prefix),
|
|
)
|
|
|
|
self.shared_head = nn.Module()
|
|
self.shared_head.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
input_embeds: torch.Tensor = None,
|
|
) -> torch.Tensor:
|
|
if input_embeds is None:
|
|
hidden_states = self.embed_tokens(input_ids)
|
|
else:
|
|
hidden_states = input_embeds
|
|
|
|
hidden_states = self.eh_proj(
|
|
torch.cat(
|
|
(
|
|
self.enorm(hidden_states),
|
|
self.hnorm(forward_batch.spec_info.hidden_states),
|
|
),
|
|
dim=-1,
|
|
)
|
|
)
|
|
|
|
residual = None
|
|
hidden_states, residual = self.decoder(
|
|
positions, hidden_states, forward_batch, residual
|
|
)
|
|
|
|
if not forward_batch.forward_mode.is_idle():
|
|
hidden_states, _ = self.shared_head.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
class DeepseekV3ForCausalLMNextN(DeepseekV3ForCausalLM):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
nn.Module.__init__(self)
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
|
|
self.model = DeepseekModelNextN(
|
|
config, quant_config, prefix=add_prefix("model", prefix)
|
|
)
|
|
|
|
if global_server_args_dict["enable_dp_attention"]:
|
|
self.lm_head = ReplicatedLinear(
|
|
config.hidden_size,
|
|
config.vocab_size,
|
|
bias=False,
|
|
prefix=add_prefix("model.shared_head.head", prefix),
|
|
)
|
|
self.logits_processor = LogitsProcessor(config, skip_all_gather=True)
|
|
else:
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("model.shared_head.head", prefix),
|
|
)
|
|
self.logits_processor = LogitsProcessor(config)
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.model(input_ids, positions, forward_batch)
|
|
return self.logits_processor(
|
|
input_ids, hidden_states, self.lm_head, forward_batch
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
if hasattr(self.config, "num_nextn_predict_layers"):
|
|
num_nextn_layers = self.config.num_nextn_predict_layers
|
|
assert num_nextn_layers == 1, "Only 1 nextn layer is supportted"
|
|
assert num_nextn_layers == self.config.num_hidden_layers
|
|
else:
|
|
raise ValueError("num_nextn_predict_layers is not in the config")
|
|
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
MoEImpl = EPMoE if global_server_args_dict["enable_ep_moe"] else FusedMoE
|
|
expert_params_mapping = MoEImpl.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.n_routed_experts,
|
|
)
|
|
|
|
nextn_layer_prefix = "model.layers.0"
|
|
nextn_spec_weight_names = [
|
|
"shared_head.norm",
|
|
"eh_proj",
|
|
"enorm",
|
|
"hnorm",
|
|
]
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
for name, loaded_weight in weights:
|
|
if not name.startswith(nextn_layer_prefix):
|
|
continue
|
|
|
|
# Use shared head and embed weights from target model
|
|
if "shared_head.head" in name or "embed_tokens" in name:
|
|
continue
|
|
|
|
is_decoder = True
|
|
# For nextn specific weights
|
|
for weight_name in nextn_spec_weight_names:
|
|
if weight_name in name:
|
|
name = name.replace(nextn_layer_prefix, "model")
|
|
is_decoder = False
|
|
break
|
|
# For decoder layer weights
|
|
if is_decoder:
|
|
name = name.replace(nextn_layer_prefix, "model.decoder")
|
|
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
# Skip non-stacked layers and experts (experts handled below).
|
|
if weight_name not in name:
|
|
continue
|
|
# We have mlp.experts[0].gate_proj in the checkpoint.
|
|
# Since we handle the experts below in expert_params_mapping,
|
|
# we need to skip here BEFORE we update the name, otherwise
|
|
# name will be updated to mlp.experts[0].gate_up_proj, which
|
|
# will then be updated below in expert_params_mapping
|
|
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
|
if ("mlp.experts." in name) and name not in params_dict:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(
|
|
param,
|
|
loaded_weight,
|
|
name,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
|
|
if not global_server_args_dict["disable_mla"]:
|
|
self_attn = self.model.decoder.self_attn
|
|
if hasattr(self_attn.kv_b_proj, "qweight"):
|
|
# AWQ compatible
|
|
if _is_cuda:
|
|
w = awq_dequantize(
|
|
self_attn.kv_b_proj.qweight,
|
|
self_attn.kv_b_proj.scales,
|
|
self_attn.kv_b_proj.qzeros,
|
|
).T
|
|
else:
|
|
w = ops.awq_dequantize(
|
|
self_attn.kv_b_proj.qweight,
|
|
self_attn.kv_b_proj.scales,
|
|
self_attn.kv_b_proj.qzeros,
|
|
0,
|
|
0,
|
|
0,
|
|
).T
|
|
else:
|
|
w = self_attn.kv_b_proj.weight
|
|
# NOTE(HandH1998): Since `bmm_fp8` only supports per-tensor scale, we have to requantize `self_attn.kv_b_proj`.
|
|
# This may affect the accuracy of fp8 model.
|
|
if hasattr(self.quant_config, "weight_block_size") and w.dtype in (
|
|
torch.float8_e4m3fn,
|
|
torch.float8_e4m3fnuz,
|
|
):
|
|
weight_block_size = self.quant_config.weight_block_size
|
|
if weight_block_size is not None:
|
|
assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
|
|
if _is_hip:
|
|
weight, weight_scale, _ = normalize_e4m3fn_to_e4m3fnuz(
|
|
weight=w,
|
|
weight_scale=self_attn.kv_b_proj.weight_scale_inv,
|
|
input_scale=None,
|
|
)
|
|
else:
|
|
weight = w
|
|
weight_scale = self_attn.kv_b_proj.weight_scale_inv
|
|
|
|
w, scale = block_quant_to_tensor_quant(
|
|
weight, weight_scale, weight_block_size
|
|
)
|
|
self_attn.w_scale = scale
|
|
if w.dtype == torch.int8:
|
|
if hasattr(self.quant_config, "weight_block_size"):
|
|
# block-wise int8 need it
|
|
weight_block_size = self.quant_config.weight_block_size
|
|
if weight_block_size is not None:
|
|
assert hasattr(self_attn.kv_b_proj, "weight_scale_inv")
|
|
weight = w
|
|
weight_scale = self_attn.kv_b_proj.weight_scale_inv
|
|
w = int8_block_dequant(
|
|
weight, weight_scale, weight_block_size
|
|
).to(torch.bfloat16)
|
|
else:
|
|
# channel-wise int8 need it
|
|
assert hasattr(self_attn.kv_b_proj, "weight_scale")
|
|
w = w.to(torch.bfloat16) * self_attn.kv_b_proj.weight_scale.to(
|
|
torch.bfloat16
|
|
)
|
|
w_kc, w_vc = w.unflatten(
|
|
0, (-1, self_attn.qk_nope_head_dim + self_attn.v_head_dim)
|
|
).split([self_attn.qk_nope_head_dim, self_attn.v_head_dim], dim=1)
|
|
self_attn.w_kc = w_kc.transpose(1, 2).contiguous().transpose(1, 2)
|
|
self_attn.w_vc = w_vc.contiguous().transpose(1, 2)
|
|
if (
|
|
hasattr(self_attn.kv_b_proj, "weight_scale")
|
|
and self_attn.w_scale is None
|
|
):
|
|
self_attn.w_scale = self_attn.kv_b_proj.weight_scale
|
|
if _is_hip:
|
|
self_attn.w_scale *= 2.0
|
|
|
|
|
|
EntryClass = [DeepseekV3ForCausalLMNextN]
|