sglang0.4.5.post1/python/sglang/srt/models/granite.py

530 lines
20 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# Adapted from
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/llama.py#L1
"""Inference-only Granite model compatible with HuggingFace weights."""
import logging
from typing import Any, Dict, Iterable, Optional, Tuple
import torch
from torch import nn
from transformers import GraniteConfig
from sglang.srt.distributed import get_tensor_model_parallel_world_size
from sglang.srt.layers.activation import SiluAndMul
from sglang.srt.layers.layernorm import RMSNorm
from sglang.srt.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.utils import add_prefix
from sglang.utils import get_exception_traceback
logger = logging.getLogger(__name__)
class GraniteMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=add_prefix("gate_up_proj", prefix),
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=add_prefix("down_proj", prefix),
)
if hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now."
)
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class GraniteAttention(nn.Module):
def __init__(
self,
config: GraniteConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
layer_id: int = 0,
rope_theta: float = 10000,
rope_scaling: Optional[Dict[str, Any]] = None,
rope_is_neox_style: bool = True,
max_position_embeddings: int = 8192,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
# MistralConfig has an optional head_dim introduced by Mistral-Nemo
self.head_dim = getattr(
config, "head_dim", self.hidden_size // self.total_num_heads
)
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = config.attention_multiplier
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=add_prefix("qkv_proj", prefix),
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=add_prefix("o_proj", prefix),
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=rope_is_neox_style,
)
self.attn = RadixAttention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
layer_id=layer_id,
prefix=add_prefix("attn", prefix),
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, forward_batch)
output, _ = self.o_proj(attn_output)
return output
class GraniteDecoderLayer(nn.Module):
def __init__(
self,
config: GraniteConfig,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.residual_multiplier = config.residual_multiplier
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
if rope_scaling is not None and getattr(
config, "original_max_position_embeddings", None
):
rope_scaling["original_max_position_embeddings"] = (
config.original_max_position_embeddings
)
rope_is_neox_style = getattr(config, "rope_is_neox_style", True)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
self.self_attn = GraniteAttention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
layer_id=layer_id,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
rope_is_neox_style=rope_is_neox_style,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
prefix=add_prefix("self_attn", prefix),
)
self.mlp = GraniteMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=add_prefix("mlp", prefix),
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
residual: Optional[torch.Tensor],
) -> Tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = (
self.self_attn(
positions=positions,
hidden_states=hidden_states,
forward_batch=forward_batch,
)
* self.residual_multiplier
) # multiplier for Maximal Update Parameterization
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states) * self.residual_multiplier
return hidden_states, residual
class GraniteModel(nn.Module):
def __init__(
self,
config: GraniteConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size, config.hidden_size
)
self.layers = nn.ModuleList(
[
GraniteDecoderLayer(
config,
i,
quant_config=quant_config,
prefix=add_prefix(f"layers.{i}", prefix),
)
for i in range(config.num_hidden_layers)
]
)
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
) -> torch.Tensor:
if input_embeds is None:
hidden_states = self.embed_tokens(input_ids)
else:
hidden_states = input_embeds
residual = None
hidden_states *= self.config.embedding_multiplier
for i in range(len(self.layers)):
layer = self.layers[i]
hidden_states, residual = layer(
positions,
hidden_states,
forward_batch,
residual,
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class GraniteForCausalLM(nn.Module):
def __init__(
self,
config: GraniteConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = GraniteModel(
config, quant_config=quant_config, prefix=add_prefix("model", prefix)
)
# If tie_word_embeddings == True, then input and output embeddings are
# the same tensor. Enforce during object creation so that weights will
# load correctly even if the LM head weights don't have a separate entry
# in the state dict.
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
)
if self.config.tie_word_embeddings:
self.lm_head.tie_weights(self.model.embed_tokens)
# Granite logit scaling factors are applied via division, but
# LogitsProcessor expects a multiplicative factor.
if hasattr(config, "logits_scaling"):
logit_scale = 1.0 / config.logits_scaling
else:
logit_scale = None
self.logits_processor = LogitsProcessor(config, logit_scale=logit_scale)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
self.stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
get_embedding: bool = False,
) -> LogitsProcessorOutput:
hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
if not get_embedding:
logits_processor_output: LogitsProcessorOutput = self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
return logits_processor_output
else:
return self.pooler(hidden_states, forward_batch)
def get_hidden_dim(self, module_name):
# return input_dim, output_dim
if module_name in ["q_proj", "o_proj", "qkv_proj"]:
return self.config.hidden_size, self.config.hidden_size
elif module_name in ["kv_proj"]:
return self.config.hidden_size, self.config.hidden_size // (
self.config.num_attention_heads // self.config.num_key_value_heads
)
elif module_name == "gate_up_proj":
return self.config.hidden_size, self.config.intermediate_size
elif module_name == "down_proj":
return self.config.intermediate_size, self.config.hidden_size
else:
raise NotImplementedError()
def get_module_name(self, name):
params_mapping = {
"q_proj": "qkv_proj",
"k_proj": "qkv_proj",
"v_proj": "qkv_proj",
"gate_proj": "gate_up_proj",
"up_proj": "gate_up_proj",
}
return params_mapping.get(name, name)
def get_module_name_from_weight_name(self, name):
for param_name, weight_name, shard_id, num_shard in self.stacked_params_mapping:
if weight_name in name:
return (
name.replace(weight_name, param_name)[: -len(".weight")],
num_shard,
)
return name[: -len(".weight")], 1
def get_num_params(self):
params_dict = dict(self.named_parameters())
return len(params_dict)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name or "projector" in name:
continue
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
if name.startswith("model.vision_tower") and name not in params_dict:
continue
if "lm_head.weight" in name and self.config.tie_word_embeddings:
# Input and output embeddings are tied, so the output embeddings
# may not be present in the checkpoint. We assume that the input
# embeddings are always present in the checkpoint.
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# This block only runs if the preceding for loop doesn't find
# a match for `name` in `stacked_params_mapping`.
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Skip loading kv_scale from ckpts towards new design.
if name.endswith(".kv_scale") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
def get_weights_by_name(
self, name: str, truncate_size: int = 100, tp_size: int = 1
) -> Optional[torch.Tensor]:
"""Get the weights of the parameter by its name. Similar to `get_parameter` in Hugging Face.
Only used for unit test with an unoptimized performance.
For optimized performance, please use torch.save and torch.load.
"""
try:
if name == "lm_head.weight" and self.config.tie_word_embeddings:
logger.info(
"word embedding is tied for this model, return embed_tokens.weight as lm_head.weight."
)
return (
self.model.embed_tokens.weight.cpu()
.to(torch.float32)
.numpy()
.tolist()[:truncate_size]
)
mapped_name = name
mapped_shard_id = None
for param_name, weight_name, shard_id in self.stacked_params_mapping:
if weight_name in name:
mapped_name = name.replace(weight_name, param_name)
mapped_shard_id = shard_id
break
params_dict = dict(self.named_parameters())
param = params_dict[mapped_name]
if mapped_shard_id is not None:
if mapped_shard_id in ["q", "k", "v"]:
num_heads = self.config.num_attention_heads // tp_size
num_kv_heads = self.config.num_key_value_heads // tp_size
head_dim = (
self.config.hidden_size // self.config.num_attention_heads
)
if mapped_shard_id == "q":
offset = 0
size = num_heads * head_dim
elif mapped_shard_id == "k":
offset = num_heads * head_dim
size = num_kv_heads * head_dim
elif mapped_shard_id == "v":
offset = (num_heads + num_kv_heads) * head_dim
size = num_kv_heads * head_dim
weight = param.data.narrow(0, offset, size)
elif mapped_shard_id in [0, 1]:
intermediate_size = self.config.intermediate_size
slice_size = intermediate_size // tp_size
if mapped_shard_id == 0: # gate_proj
offset = 0
size = slice_size
elif mapped_shard_id == 1: # up_proj
offset = slice_size
size = slice_size
weight = param.data.narrow(0, offset, size)
else:
weight = param.data
else:
weight = param.data
if tp_size > 1 and ("o_proj" in name or "down_proj" in name):
gathered_weights = [torch.zeros_like(weight) for _ in range(tp_size)]
torch.distributed.all_gather(gathered_weights, weight)
weight = torch.cat(gathered_weights, dim=1)
return weight.cpu().to(torch.float32).numpy().tolist()[:truncate_size]
except Exception:
logger.error(
f"Error getting weights by name {name} in GraniteForCausalLM: {get_exception_traceback()}"
)
return None
EntryClass = [GraniteForCausalLM]