sglang0.4.5.post1/python/sglang/srt/models/internlm2_reward.py

65 lines
2.5 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from typing import Iterable, Optional, Tuple
import torch
from torch import nn
from transformers import PretrainedConfig
from sglang.srt.layers.pooler import EmbeddingPoolerOutput, Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.models.internlm2 import InternLM2ForCausalLM, InternLM2Model
from sglang.srt.utils import add_prefix
class InternLM2ForRewardModel(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.vocab_size = config.vocab_size
self.model = InternLM2Model(
config, quant_config, prefix=add_prefix("model", prefix)
)
self.v_head = nn.Linear(config.hidden_size, 1, bias=False)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=False)
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
get_embedding: bool = True,
) -> EmbeddingPoolerOutput:
assert get_embedding, "InternLM2ForRewardModel is only used for embedding"
hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
last_token_hidden = self.pooler(hidden_states, forward_batch).embeddings
scores = self.v_head(last_token_hidden)
return EmbeddingPoolerOutput(scores)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
return InternLM2ForCausalLM.load_weights(self, weights)
EntryClass = InternLM2ForRewardModel