147 lines
4.8 KiB
Python
147 lines
4.8 KiB
Python
"""
|
|
Copyright 2023-2024 SGLang Team
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
"""
|
|
|
|
from sglang.srt.utils import add_prefix
|
|
|
|
# Adapted from
|
|
# https://github.com/SafeAILab/EAGLE/blob/main/eagle/model/cnets.py
|
|
"""Inference-only LLaMA-EAGLE model compatible with HuggingFace weights."""
|
|
|
|
from typing import Iterable, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import LlamaConfig
|
|
|
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
|
from sglang.srt.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
|
from sglang.srt.models.llama import LlamaDecoderLayer, LlamaForCausalLM
|
|
|
|
|
|
class LlamaDecoderLayer(LlamaDecoderLayer):
|
|
def __init__(
|
|
self,
|
|
config: LlamaConfig,
|
|
layer_id: int = 0,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__(config, layer_id, quant_config, prefix)
|
|
|
|
# Skip the input_layernorm
|
|
# https://github.com/SafeAILab/EAGLE/blob/35c78f6cdc19a73e05cf5c330b4c358dad970c6a/eagle/model/cnets.py#L427
|
|
if layer_id == 0:
|
|
del self.input_layernorm
|
|
setattr(self, "input_layernorm", lambda x: x)
|
|
|
|
|
|
class LlamaModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: LlamaConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
self.vocab_size = config.vocab_size
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
prefix=add_prefix("embed_tokens", prefix),
|
|
)
|
|
self.layers = nn.ModuleList(
|
|
[
|
|
LlamaDecoderLayer(
|
|
config,
|
|
i,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix(f"layers.{i}", prefix),
|
|
)
|
|
for i in range(config.num_hidden_layers)
|
|
]
|
|
)
|
|
self.fc = torch.nn.Linear(config.hidden_size * 2, config.hidden_size)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
input_embeds: torch.Tensor = None,
|
|
) -> torch.Tensor:
|
|
if input_embeds is None:
|
|
hidden_states = self.embed_tokens(input_ids)
|
|
else:
|
|
hidden_states = input_embeds
|
|
|
|
hidden_states = self.fc(
|
|
torch.cat((hidden_states, forward_batch.spec_info.hidden_states), dim=-1)
|
|
)
|
|
|
|
residual = None
|
|
for i in range(len(self.layers)):
|
|
layer = self.layers[i]
|
|
hidden_states, residual = layer(
|
|
positions,
|
|
hidden_states,
|
|
forward_batch,
|
|
residual,
|
|
)
|
|
return hidden_states + residual
|
|
|
|
|
|
class LlamaForCausalLMEagle(LlamaForCausalLM):
|
|
def __init__(
|
|
self,
|
|
config: LlamaConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
nn.Module.__init__(self)
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.model = LlamaModel(
|
|
config, quant_config=quant_config, prefix=add_prefix("model", prefix)
|
|
)
|
|
# Llama 3.2 1B Instruct set tie_word_embeddings to True
|
|
# Llama 3.1 8B Instruct set tie_word_embeddings to False
|
|
if self.config.tie_word_embeddings:
|
|
self.lm_head = self.model.embed_tokens
|
|
else:
|
|
self.lm_head = ParallelLMHead(
|
|
getattr(config, "hot_vocab_size", config.vocab_size),
|
|
config.hidden_size,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("lm_head", prefix),
|
|
)
|
|
|
|
self.logits_processor = LogitsProcessor(config)
|
|
self.capture_aux_hidden_states = False
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
for name, loaded_weight in weights:
|
|
if "lm_head" not in name:
|
|
name = "model." + name
|
|
super().load_weights([(name, loaded_weight)])
|
|
|
|
|
|
EntryClass = [LlamaForCausalLMEagle]
|