sglang0.4.5.post1/python/sglang/srt/models/llama_embedding.py

88 lines
3.2 KiB
Python

from typing import Iterable, Tuple
import torch
from torch import nn
from transformers import LlamaConfig
from sglang.srt.layers.pooler import EmbeddingPoolerOutput, Pooler, PoolingType
from sglang.srt.model_executor.model_runner import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.llama import LlamaModel
from sglang.srt.utils import add_prefix
class LlamaEmbeddingModel(nn.Module):
def __init__(
self,
config: LlamaConfig,
quant_config=None,
prefix: str = "",
) -> None:
super().__init__()
self.model = LlamaModel(
config, quant_config=quant_config, prefix=add_prefix("model", prefix)
)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
@torch.no_grad()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
input_embeds: torch.Tensor = None,
get_embedding: bool = True,
) -> EmbeddingPoolerOutput:
assert (
get_embedding
), "LlamaEmbeddingModel / MistralModel is only used for embedding"
hidden_states = self.model(input_ids, positions, forward_batch, input_embeds)
return self.pooler(hidden_states, forward_batch)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.model.named_parameters())
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name or "projector" in name:
return
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
return
if name.startswith("model.vision_tower") and name not in params_dict:
return
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
return
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
class MistralModel(LlamaEmbeddingModel):
pass
EntryClass = [LlamaEmbeddingModel, MistralModel]