sglang0.4.5.post1/python/sglang/srt/models/llava.py

575 lines
26 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Inference-only LLaVa model compatible with HuggingFace weights."""
import math
import re
from typing import Iterable, List, Optional, Tuple
import numpy as np
import torch
from torch import nn
from transformers import (
CLIPVisionConfig,
CLIPVisionModel,
LlavaConfig,
MistralConfig,
Qwen2Config,
SiglipVisionModel,
)
from transformers.models.llava.modeling_llava import LlavaMultiModalProjector
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.managers.schedule_batch import MultimodalInputs
from sglang.srt.mm_utils import (
get_anyres_image_grid_shape,
unpad_image,
unpad_image_shape,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.models.llama import LlamaForCausalLM
from sglang.srt.models.mistral import MistralForCausalLM
from sglang.srt.models.qwen2 import Qwen2ForCausalLM
from sglang.srt.utils import add_prefix
class LlavaBaseForCausalLM(nn.Module):
def pad_input_ids(self, input_ids: List[int], image_inputs: MultimodalInputs):
image_sizes, pad_values = image_inputs.image_sizes, image_inputs.pad_values
# hardcode for spatial_unpad + anyres
if image_inputs.modalities is not None and (
"multi-images" in image_inputs.modalities
or "video" in image_inputs.modalities
):
image_aspect_ratio = "pad"
else:
image_aspect_ratio = "anyres"
offset_list = []
image_inputs.image_pad_len = []
for image_idx, image_s in enumerate(image_sizes):
if len(image_sizes) > 16:
# 2x2 pooling with stride 2
new_image_feature_len = (
math.ceil(self.image_size / self.patch_size / 2) ** 2
)
else:
new_image_feature_len = self.image_feature_len # multiimage
height = width = self.num_patches_per_side
if "anyres" in image_aspect_ratio:
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
image_s,
self.image_grid_pinpoints,
self.vision_tower.config.image_size,
)
h = num_patch_height * height
w = num_patch_width * width
new_h, new_w = unpad_image_shape(h, w, image_s)
if "anyres_max" in self.config.image_aspect_ratio:
matched_anyres_max_num_patches = re.match(
r"anyres_max_(\d+)", self.config.image_aspect_ratio
)
if matched_anyres_max_num_patches:
max_num_patches = int(matched_anyres_max_num_patches.group(1))
# times = math.sqrt(h * w / (max_num_patches * unit**2))
times = math.sqrt(
new_h * new_w / (max_num_patches * self.image_feature_len)
)
if times > 1.1:
new_h = int(new_h // times)
new_w = int(new_w // times)
new_image_feature_len += new_h * (new_w + 1)
try:
offset = input_ids.index(self.config.image_token_index)
except ValueError:
offset = 0
# old_len + pad_len - 1, because we need to remove image_token_id
input_ids = (
input_ids[:offset]
+ [pad_values[image_idx]] * new_image_feature_len
+ input_ids[offset + 1 :]
)
offset_list.append(offset)
image_inputs.image_pad_len.append(new_image_feature_len)
image_inputs.image_offsets = offset_list
return input_ids
def encode_images(self, pixel_values: torch.Tensor) -> torch.Tensor:
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
# NOTE: This is not memory efficient. (output_hidden_states=True) will save all the hidden stated.
selected_image_feature = image_outputs.hidden_states[self.vision_feature_layer]
if self.vision_feature_select_strategy in ["default", "patch"]:
selected_image_feature = selected_image_feature[:, 1:]
elif self.vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
else:
raise ValueError(
f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
)
image_features = self.multi_modal_projector(selected_image_feature)
return image_features
@torch.no_grad()
def forward(
self,
input_ids: torch.LongTensor,
positions: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
image_inputs = forward_batch.mm_inputs
if forward_batch.forward_mode.is_extend():
# Clamp input ids. This is because the input_ids for the image tokens are
# filled with the hash values of the image for the prefix matching in the radix attention.
# There values are useless because their embeddings will be replaced by vision embeddings anyway.
input_ids.clamp_(min=0, max=self.config.vocab_size - 1)
# Embed text inputs
input_embeds = self.language_model.model.embed_tokens(input_ids)
# Got List[List[str]] extend it to List[str]
# The length of the List should be equal to batch size
modalities_list = []
max_image_offset = []
for im in image_inputs:
if im and im.modalities is not None:
modalities_list.extend(im.modalities)
if im and im.image_offsets:
max_image_offset.append(
np.max(np.array(im.image_offsets) + np.array(im.image_pad_len))
)
else:
max_image_offset.append(-1)
start_positions = positions[forward_batch.extend_start_loc].cpu().numpy()
need_vision = start_positions <= np.array(max_image_offset)
if need_vision.any():
bs = forward_batch.batch_size
pixel_values = [
image_inputs[i].pixel_values for i in range(bs) if need_vision[i]
]
image_sizes = [
image_inputs[i].image_sizes for i in range(bs) if need_vision[i]
]
########## Encode Image ########
if pixel_values[0].ndim == 4:
# llava-hd: BS, num_patch, C=3, H=336, W=336, num_patch obtained from process_images
np.concatenate(pixel_values, axis=0)
# ndim=4
concat_images = torch.tensor(
np.concatenate(pixel_values, axis=0),
device=self.vision_tower.device,
)
image_features = self.encode_images(concat_images)
split_sizes = [image.shape[0] for image in pixel_values]
image_features = torch.split(image_features, split_sizes, dim=0)
# hd image_features: BS, num_patch, 576, 4096
else:
# normal pixel: BS, C=3, H=336, W=336
pixel_values = torch.tensor(
np.array(pixel_values), device=self.vision_tower.device
)
image_features = self.encode_images(pixel_values)
# image_features: BS, 576, 4096
if self.mm_patch_merge_type.startswith("spatial"):
new_image_features = []
height = width = self.num_patches_per_side
for image_idx, image_feature in enumerate(image_features):
if modalities_list[image_idx] == "image":
image_aspect_ratio = (
self.config.image_aspect_ratio
) # single image
elif (
modalities_list[image_idx] == "multi-images"
or modalities_list[image_idx] == "video"
):
image_aspect_ratio = "pad" # multi image
# image_aspect_ratio = (
# "anyres" if len(image_sizes[image_idx]) == 1 else "pad"
# )
if (
image_feature.shape[0] > 1
and "anyres" in image_aspect_ratio
and modalities_list[image_idx] == "image"
):
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
assert height * width == base_image_feature.shape[0]
if "anyres_max" in image_aspect_ratio:
matched_anyres_max_num_patches = re.match(
r"anyres_max_(\d+)", image_aspect_ratio
)
if matched_anyres_max_num_patches:
max_num_patches = int(
matched_anyres_max_num_patches.group(1)
)
if (
image_aspect_ratio == "anyres"
or "anyres_max" in image_aspect_ratio
):
vision_tower_image_size = self.image_size
try:
num_patch_width, num_patch_height = (
get_anyres_image_grid_shape(
image_sizes[image_idx][0],
self.config.image_grid_pinpoints,
vision_tower_image_size,
)
)
except Exception as e:
print(f"Error: {e}")
num_patch_width, num_patch_height = 2, 2
image_feature = image_feature.view(
num_patch_height, num_patch_width, height, width, -1
)
else:
image_feature = image_feature.view(
2, 2, height, width, -1
)
# (
# num_patch_width,
# num_patch_height,
# ) = get_anyres_image_grid_shape(
# image_sizes[image_idx][0],
# self.image_grid_pinpoints,
# self.vision_tower.config.image_size,
# )
# image_feature = image_feature.view(
# num_patch_height, num_patch_width, height, width, -1
# )
if "unpad" in self.mm_patch_merge_type:
unit = image_feature.shape[2]
image_feature = image_feature.permute(
4, 0, 2, 1, 3
).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(
2, 3
)
image_feature = unpad_image(
image_feature, image_sizes[image_idx][0]
)
if (
"anyres_max" in image_aspect_ratio
and matched_anyres_max_num_patches
):
c, h, w = image_feature.shape
times = math.sqrt(
h * w / (max_num_patches * unit**2)
)
if times > 1.1:
image_feature = image_feature[None]
image_feature = nn.functional.interpolate(
image_feature,
[int(h // times), int(w // times)],
mode="bilinear",
)[0]
image_feature = torch.cat(
(
image_feature,
self.language_model.model.image_newline[
:, None, None
].expand(*image_feature.shape[:-1], 1),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(
0, 1
)
else:
image_feature = image_feature.permute(
0, 2, 1, 3, 4
).contiguous()
image_feature = image_feature.flatten(0, 3)
image_feature = torch.cat(
(base_image_feature, image_feature), dim=0
)
image_feature = image_feature.unsqueeze(0)
else:
if modalities_list[image_idx] == "video": # video
# 2x2 pooling
num_of_frames = image_feature.shape[0]
image_feature = image_feature.view(
num_of_frames, height, width, -1
)
image_feature = image_feature.permute(
0, 3, 1, 2
).contiguous() # N, C, H, W
height, weight = image_feature.shape[2:]
scaled_shape = [
math.ceil(height / 2),
math.ceil(weight / 2),
]
image_feature = nn.functional.interpolate(
image_feature, size=scaled_shape, mode="bilinear"
)
image_feature = (
image_feature.flatten(2)
.transpose(1, 2)
.contiguous()
) # N, C, H*W
if "unpad" in self.mm_patch_merge_type:
image_feature = torch.cat(
(
image_feature,
# Expand to (bs, 1, hidden_dim) and concat at the end of the image tokens
self.language_model.model.image_newline[
None, None
].expand(
image_feature.shape[0],
1,
image_feature.shape[-1],
),
),
dim=1,
)
new_image_features.append(image_feature)
image_features = new_image_features
# Fill in the placeholder for the image
extend_start_loc_cpu = forward_batch.extend_start_loc.cpu().numpy()
extend_seq_lens = forward_batch.extend_seq_lens.cpu().numpy()
prefix_lens_cpu = forward_batch.extend_prefix_lens_cpu
pt = 0
for i in range(bs):
if not need_vision[i]:
continue
start_idx = extend_start_loc_cpu[i]
seq_len = extend_seq_lens[i]
prefix_len = prefix_lens_cpu[i]
# Multiple images
for image_idx, image_offset in enumerate(
image_inputs[i].image_offsets
):
if (
image_offset + image_inputs[i].image_pad_len[image_idx]
<= prefix_len
):
continue
if image_offset >= prefix_len + seq_len:
break
tmp_image_feature = image_features[pt][image_idx]
pad_len = tmp_image_feature.shape[0]
input_offset = image_offset - prefix_len
left_idx = start_idx + input_offset
right_idx = left_idx + pad_len
assert right_idx > start_idx
if input_offset < 0:
left_idx = start_idx
tmp_image_feature = tmp_image_feature[-input_offset:]
if right_idx > start_idx + seq_len:
tmp_image_feature = tmp_image_feature[
: start_idx + seq_len - right_idx
]
right_idx = start_idx + seq_len
try:
input_embeds[left_idx:right_idx] = tmp_image_feature
except RuntimeError as e:
print(f"RuntimeError in image encoding: {e}")
print(f"{input_embeds.shape=}, {tmp_image_feature.shape=}")
print(
f"{start_idx=}, {image_offset=}, {prefix_len=}, {pad_len=}"
)
pt += 1
return self.language_model(
input_ids, positions, forward_batch, input_embeds=input_embeds
)
elif forward_batch.forward_mode.is_decode():
return self.language_model(input_ids, positions, forward_batch)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
# Load clip vision model by cfg['mm_vision_tower']:
# huggingface_name or path_of_clip_relative_to_llava_model_dir
# We put the initialization here instead of __init__ to allow it being reused by other subclasses.
vision_path = self.config.mm_vision_tower
if "clip" in vision_path:
self.vision_tower = CLIPVisionModel.from_pretrained(
vision_path, torch_dtype=torch.float16
).cuda()
elif "siglip" in vision_path:
self.vision_tower = SiglipVisionModel.from_pretrained(
vision_path, torch_dtype=torch.float16
).cuda()
# Siglip needs all feature tokens
self.config.mm_vision_select_feature = "full"
self.vision_tower.eval()
self.vision_feature_layer = self.config.mm_vision_select_layer
self.vision_feature_select_strategy = self.config.mm_vision_select_feature
self.image_size = self.vision_tower.config.image_size
self.patch_size = self.vision_tower.config.patch_size
self.mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
self.image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
self.image_grid_pinpoints = getattr(self.config, "image_grid_pinpoints", None)
self.image_feature_len = int((self.image_size // self.patch_size) ** 2)
if (
self.vision_feature_select_strategy == "patch"
or self.vision_feature_select_strategy == "full"
):
pass
elif self.vision_feature_select_strategy == "cls_patch":
self.image_feature_len += 1
else:
raise ValueError(f"Unexpected select feature: {self.select_feature}")
# load mm_projector
projector_weights = {
"model.mm_projector.0": "multi_modal_projector.linear_1",
"model.mm_projector.2": "multi_modal_projector.linear_2",
"model.vision_tower.vision_tower": "vision_tower",
# Update the vision tower weights if we find them in the checkpoint (it may be finetuned).
"model.image_newline": "language_model.model.image_newline",
}
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "projector" in name or "vision_tower" in name or "image_newline" in name:
for weight_name, param_name in projector_weights.items():
if weight_name in name:
name = name.replace(weight_name, param_name)
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
else:
self.language_model.load_weights([(name, loaded_weight)])
@property
def num_patches_per_side(self):
return self.image_size // self.patch_size
class LlavaLlamaForCausalLM(LlavaBaseForCausalLM):
def __init__(
self,
config: LlavaConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.vision_tower = None
self.config.vision_config.hidden_size = config.mm_hidden_size
self.config.text_config.hidden_size = config.hidden_size
self.multi_modal_projector = LlavaMultiModalProjector(config)
self.language_model = LlamaForCausalLM(
config,
quant_config=quant_config,
prefix=add_prefix("language_model", prefix),
)
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
self.language_model.model.image_newline = nn.Parameter(
torch.empty(config.text_config.hidden_size, dtype=torch.float16)
)
class LlavaQwenForCausalLM(LlavaBaseForCausalLM):
def __init__(
self,
config: LlavaConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.vision_tower = None
if getattr(self.config, "vision_config", None) is None:
self.config.vision_config = CLIPVisionConfig(self.config.mm_vision_tower)
if getattr(self.config, "text_config", None) is None:
self.config.text_config = Qwen2Config(self.config._name_or_path)
self.config.vision_config.hidden_size = config.mm_hidden_size
self.config.text_config.hidden_size = config.hidden_size
if getattr(self.config, "projector_hidden_act", None) is None:
self.config.projector_hidden_act = "gelu"
if getattr(self.config, "image_token_index", None) is None:
self.config.image_token_index = 151646
self.multi_modal_projector = LlavaMultiModalProjector(config)
self.language_model = Qwen2ForCausalLM(
config,
quant_config=quant_config,
prefix=add_prefix("language_model", prefix),
)
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
self.language_model.model.image_newline = nn.Parameter(
torch.empty(config.text_config.hidden_size, dtype=torch.float16)
)
class LlavaMistralForCausalLM(LlavaBaseForCausalLM):
def __init__(
self,
config: LlavaConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.vision_tower = None
if getattr(self.config, "vision_config", None) is None:
self.config.vision_config = CLIPVisionConfig(self.config.mm_vision_tower)
if getattr(self.config, "text_config", None) is None:
self.config.text_config = MistralConfig(self.config._name_or_path)
self.config.vision_config.hidden_size = config.mm_hidden_size
self.config.text_config.hidden_size = config.hidden_size
if getattr(self.config, "projector_hidden_act", None) is None:
self.config.projector_hidden_act = "gelu"
if getattr(self.config, "image_token_index", None) is None:
self.config.image_token_index = 32000
self.multi_modal_projector = LlavaMultiModalProjector(config)
self.language_model = MistralForCausalLM(
config,
quant_config=quant_config,
prefix=add_prefix("language_model", prefix),
)
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
self.language_model.model.image_newline = nn.Parameter(
torch.empty(config.text_config.hidden_size, dtype=torch.float16)
)
EntryClass = [LlavaLlamaForCausalLM, LlavaQwenForCausalLM, LlavaMistralForCausalLM]