275 lines
12 KiB
Python
275 lines
12 KiB
Python
# Copyright 2023-2024 SGLang Team
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""Inference-only LLaVa video model compatible with HuggingFace weights."""
|
|
|
|
from typing import Iterable, List, Optional, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch import nn
|
|
from transformers import CLIPVisionModel, LlavaConfig
|
|
from transformers.models.llava.modeling_llava import LlavaMultiModalProjector
|
|
|
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
|
from sglang.srt.managers.schedule_batch import MultimodalInputs
|
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
|
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
|
from sglang.srt.models.llama import LlamaForCausalLM
|
|
from sglang.srt.utils import add_prefix
|
|
|
|
|
|
class LlavaVidForCausalLM(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: LlavaConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
self.vision_tower = None
|
|
self.config.vision_config.hidden_size = config.mm_hidden_size
|
|
self.config.text_config.hidden_size = config.hidden_size
|
|
self.multi_modal_projector = LlavaMultiModalProjector(config)
|
|
self.mm_spatial_pool_stride = getattr(self.config, "mm_spatial_pool_stride", 2)
|
|
self.resampler = nn.AvgPool2d(
|
|
kernel_size=self.mm_spatial_pool_stride, stride=self.mm_spatial_pool_stride
|
|
)
|
|
self.language_model = LlamaForCausalLM(
|
|
config,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("language_model", prefix),
|
|
)
|
|
self.num_frames = getattr(self.config, "num_frames", 16)
|
|
if "unpad" in getattr(config, "mm_patch_merge_type", ""):
|
|
self.language_model.model.image_newline = nn.Parameter(
|
|
torch.empty(config.text_config.hidden_size, dtype=torch.float16)
|
|
)
|
|
|
|
def pad_input_ids(self, input_ids: List[int], image_inputs: MultimodalInputs):
|
|
pad_values = image_inputs.pad_values
|
|
new_image_feature_len = self.image_feature_len
|
|
|
|
pad_ids = pad_values * (
|
|
(new_image_feature_len + len(pad_values)) // len(pad_values)
|
|
)
|
|
offset = input_ids.index(self.config.image_token_index)
|
|
# old_len + pad_len - 1, because we need to remove image_token_id
|
|
new_input_ids = (
|
|
input_ids[:offset]
|
|
+ pad_ids[:new_image_feature_len]
|
|
+ input_ids[offset + 1 :]
|
|
)
|
|
image_inputs.image_offsets = [offset]
|
|
return new_input_ids
|
|
|
|
def encode_images(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
|
image_outputs = self.vision_tower(pixel_values, output_hidden_states=True)
|
|
# NOTE: This is not memory efficient. (output_hidden_states=True) will save all the hidden stated.
|
|
|
|
selected_image_feature = image_outputs.hidden_states[self.vision_feature_layer]
|
|
if self.vision_feature_select_strategy in ["default", "patch"]:
|
|
selected_image_feature = selected_image_feature[:, 1:]
|
|
elif self.vision_feature_select_strategy == "full":
|
|
selected_image_feature = selected_image_feature
|
|
else:
|
|
raise ValueError(
|
|
f"Unexpected select feature strategy: {self.config.vision_feature_select_strategy}"
|
|
)
|
|
|
|
height = width = self.num_patches_per_side
|
|
num_of_frames = selected_image_feature.shape[0]
|
|
selected_image_feature = selected_image_feature.view(
|
|
num_of_frames, height, width, -1
|
|
)
|
|
selected_image_feature = selected_image_feature.permute(0, 3, 1, 2).contiguous()
|
|
selected_image_feature = (
|
|
self.resampler(selected_image_feature)
|
|
.flatten(2)
|
|
.transpose(1, 2)
|
|
.contiguous()
|
|
)
|
|
|
|
image_features = self.multi_modal_projector(selected_image_feature)
|
|
|
|
return image_features
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor,
|
|
positions: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
image_inputs = forward_batch.mm_inputs
|
|
if forward_batch.forward_mode.is_extend():
|
|
bs = forward_batch.batch_size
|
|
|
|
# Clamp input ids. See llava.py for more details
|
|
input_ids = input_ids.clamp_(min=0, max=self.config.vocab_size - 1)
|
|
|
|
# Embed text inputs
|
|
input_embeds = self.language_model.model.embed_tokens(input_ids)
|
|
|
|
# Whether the requests need vision inputs
|
|
max_image_offset = []
|
|
for im in image_inputs:
|
|
if im and im.image_offsets:
|
|
max_image_offset.append(max(im.image_offsets))
|
|
else:
|
|
max_image_offset.append(-1)
|
|
start_positions = positions[forward_batch.extend_start_loc].cpu().numpy()
|
|
need_vision = start_positions <= np.array(max_image_offset)
|
|
|
|
if need_vision.any():
|
|
pixel_values = [
|
|
image_inputs[i].pixel_values for i in range(bs) if need_vision[i]
|
|
]
|
|
image_offsets = [
|
|
image_inputs[i].image_offsets for i in range(bs) if need_vision[i]
|
|
]
|
|
|
|
########## Encode Image ########
|
|
|
|
if pixel_values[0].ndim == 4:
|
|
# llava-hd: BS, num_patch, C=3, H=336, W=336, num_patch obtained from process_images
|
|
np.concatenate(pixel_values, axis=0)
|
|
# ndim=4
|
|
concat_images = torch.tensor(
|
|
np.concatenate(pixel_values, axis=0),
|
|
device=self.vision_tower.device,
|
|
)
|
|
# image_features = self.encode_images(concat_images)
|
|
# split_sizes = [image.shape[0] for image in pixel_values]
|
|
# image_features = torch.split(image_features, split_sizes, dim=0)
|
|
image_features = self.encode_images(
|
|
concat_images
|
|
) # , prompts)#, image_counts, long_video=long_video)
|
|
split_sizes = [image.shape[0] for image in pixel_values]
|
|
image_features = torch.split(image_features, split_sizes, dim=0)
|
|
|
|
# hd image_features: BS, num_patch, 576, 4096
|
|
else:
|
|
# normal pixel: BS, C=3, H=336, W=336
|
|
pixel_values = torch.tensor(
|
|
np.array(pixel_values), device=self.vision_tower.device
|
|
)
|
|
image_features = self.encode_images(pixel_values)
|
|
# image_features: BS, 576, 4096
|
|
|
|
new_image_features = []
|
|
for image_idx, image_feature in enumerate(image_features):
|
|
new_image_features.append(image_feature.flatten(0, 1))
|
|
image_features = new_image_features
|
|
|
|
# Fill in the placeholder for the image
|
|
extend_start_loc_cpu = forward_batch.extend_start_loc.cpu().numpy()
|
|
prefix_lens_cpu = forward_batch.extend_prefix_lens_cpu
|
|
pt = 0
|
|
for i in range(bs):
|
|
if not need_vision[i]:
|
|
continue
|
|
|
|
start_idx = extend_start_loc_cpu[i]
|
|
prefix_len = prefix_lens_cpu[i]
|
|
|
|
# Multiple images
|
|
for image_offset in image_offsets[i]:
|
|
if image_offset < prefix_len:
|
|
continue
|
|
|
|
tmp_image_feature = image_features[pt]
|
|
pad_len = tmp_image_feature.shape[0]
|
|
|
|
left_idx = start_idx + (image_offset - prefix_len)
|
|
right_idx = start_idx + (image_offset - prefix_len) + pad_len
|
|
try:
|
|
input_embeds[left_idx:right_idx] = tmp_image_feature
|
|
except RuntimeError as e:
|
|
print(f"RuntimeError in image encoding: {e}")
|
|
print(f"{input_embeds.shape=}, {tmp_image_feature.shape=}")
|
|
print(
|
|
f"{start_idx=}, {image_offset=}, {prefix_len=}, {pad_len=}"
|
|
)
|
|
pt += 1
|
|
|
|
return self.language_model(
|
|
input_ids, positions, forward_batch, input_embeds=input_embeds
|
|
)
|
|
elif forward_batch.forward_mode.is_decode():
|
|
return self.language_model(input_ids, positions, forward_batch)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
# Load clip vision model by cfg['mm_vision_tower']:
|
|
# huggingface_name or path_of_clip_relative_to_llava_model_dir
|
|
# We put the initialization here instead of __init__ to allow it being reused by other subclasses.
|
|
vision_path = self.config.mm_vision_tower
|
|
self.vision_tower = CLIPVisionModel.from_pretrained(
|
|
vision_path, torch_dtype=torch.float16
|
|
).cuda()
|
|
self.vision_tower.eval()
|
|
|
|
self.vision_feature_layer = self.config.mm_vision_select_layer
|
|
self.vision_feature_select_strategy = self.config.mm_vision_select_feature
|
|
self.image_size = self.vision_tower.config.image_size
|
|
self.patch_size = self.vision_tower.config.patch_size
|
|
|
|
self.mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
|
|
self.image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
|
|
self.image_grid_pinpoints = getattr(self.config, "image_grid_pinpoints", None)
|
|
|
|
print(f"target_frames: {self.num_frames}")
|
|
self.image_feature_len = self.num_frames * int(
|
|
(self.image_size / self.patch_size / self.mm_spatial_pool_stride) ** 2
|
|
)
|
|
if self.vision_feature_select_strategy == "patch":
|
|
pass
|
|
elif self.vision_feature_select_strategy == "cls_patch":
|
|
self.image_feature_len += 1
|
|
else:
|
|
raise ValueError(f"Unexpected select feature: {self.select_feature}")
|
|
|
|
# load mm_projector
|
|
projector_weights = {
|
|
"model.mm_projector.0": "multi_modal_projector.linear_1",
|
|
"model.mm_projector.2": "multi_modal_projector.linear_2",
|
|
"model.vision_resampler.mm_projector.0": "multi_modal_projector.linear_1",
|
|
"model.vision_resampler.mm_projector.2": "multi_modal_projector.linear_2",
|
|
"model.vision_tower.vision_tower": "vision_tower", # Update the vision tower weights if we find them in the checkpoint (it may be finetuned).
|
|
"model.image_newline": "language_model.model.image_newline",
|
|
}
|
|
params_dict = dict(self.named_parameters())
|
|
for name, loaded_weight in weights:
|
|
# FIXME: why projector weights read two times?
|
|
if "projector" in name or "vision_tower" in name or "image_newline" in name:
|
|
for weight_name, param_name in projector_weights.items():
|
|
if weight_name in name:
|
|
name = name.replace(weight_name, param_name)
|
|
if name in params_dict:
|
|
param = params_dict[name]
|
|
else:
|
|
print(f"Warning: {name} not found in the model")
|
|
continue
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
else:
|
|
self.language_model.load_weights([(name, loaded_weight)])
|
|
|
|
@property
|
|
def num_patches_per_side(self):
|
|
return self.image_size // self.patch_size
|
|
|
|
|
|
EntryClass = LlavaVidForCausalLM
|