sglang0.4.5.post1/python/sglang/srt/models/phi3_small.py

462 lines
15 KiB
Python

import math
from typing import Iterable, Optional, Tuple, Union
import torch
from torch import nn
from transformers import Phi3Config
from transformers.configuration_utils import PretrainedConfig
from sglang.srt.distributed import get_tensor_model_parallel_world_size
from sglang.srt.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
RowParallelLinear,
)
from sglang.srt.layers.logits_processor import LogitsProcessor, LogitsProcessorOutput
from sglang.srt.layers.pooler import Pooler, PoolingType
from sglang.srt.layers.quantization.base_config import QuantizationConfig
from sglang.srt.layers.radix_attention import RadixAttention
from sglang.srt.layers.rotary_embedding import get_rope
from sglang.srt.layers.vocab_parallel_embedding import (
DEFAULT_VOCAB_PADDING_SIZE,
ParallelLMHead,
VocabParallelEmbedding,
)
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.utils import add_prefix, make_layers
@torch.jit.script
def quick_gelu(x):
return x * torch.sigmoid(1.702 * x)
@torch.jit.script
def gegelu(input, limit: Optional[float] = None):
a_gelu, a_linear = input[..., ::2], input[..., 1::2]
if limit is not None:
a_gelu = torch.where(
torch.isinf(a_gelu), a_gelu, a_gelu.clamp(min=None, max=limit)
)
a_linear = torch.where(
torch.isinf(a_linear),
a_linear,
a_linear.clamp(min=-limit, max=limit),
)
out_gelu = quick_gelu(a_gelu)
return out_gelu * (a_linear + 1)
class Phi3SmallMLP(nn.Module):
def __init__(
self,
config: PretrainedConfig,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
assert (
self.config.hidden_act == "gegelu"
), "Only `gegelu` is supported for the 4.7 series of models .."
self.hidden_size = config.hidden_size
self.gegelu_limit = config.gegelu_limit
self.intermediate_size = config.intermediate_size
self.up_proj = MergedColumnParallelLinear(
self.hidden_size,
2 * [self.intermediate_size],
bias=True,
quant_config=quant_config,
prefix=add_prefix("up_proj", prefix),
)
self.down_proj = RowParallelLinear(
self.intermediate_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=add_prefix("down_proj", prefix),
)
def forward(self, x):
gate_up, _ = self.up_proj(x)
x = gegelu(gate_up)
x, _ = self.down_proj(x)
return x
class Phi3SmallSelfAttention(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_id: int = 0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.layer_id = layer_id
self.config = config
self.sparse_block_size = config.blocksparse_block_size
self.homo_heads = config.blocksparse_homo_head_pattern
self.local_blocks = config.blocksparse_num_local_blocks
self.vert_stride = config.blocksparse_vert_stride
assert (
config.blocksparse_block_size == config.blocksparse_triton_kernel_block_size
)
self.hidden_size = config.hidden_size
# Number of Query Heads
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.tp_size = get_tensor_model_parallel_world_size()
# Number of total Key Value Heads before tensor parallel
self.num_key_value_heads = config.num_key_value_heads
self.num_q_per_kv = self.num_heads // self.num_key_value_heads
if self.tp_size > 1:
assert self.num_key_value_heads % self.tp_size == 0
self.num_kv_heads_per_partion = max(1, self.num_key_value_heads // self.tp_size)
self.num_heads_per_partition = self.num_heads // self.tp_size
self.max_position_embeddings = config.max_position_embeddings
self.rope_embedding_base = config.rope_embedding_base
self.rope_position_scale = config.rope_position_scale
self.is_causal = True
norm_factor = None
if config.mup_use_scaling:
norm_factor = self.head_dim / config.mup_attn_multiplier
else:
norm_factor = math.sqrt(self.head_dim)
self.scale = 1 / norm_factor
self.query_key_value = QKVParallelLinear(
self.hidden_size,
self.head_dim,
self.num_heads,
self.num_key_value_heads,
bias=True,
quant_config=quant_config,
prefix=add_prefix("qkv_proj", prefix),
)
self.dense = RowParallelLinear(
self.hidden_size,
self.hidden_size,
bias=True,
quant_config=quant_config,
prefix=add_prefix("o_proj", prefix),
)
if getattr(self.config, "rope_scaling", None) is not None:
rope_scaling = self.config.rope_scaling
for key in rope_scaling:
if isinstance(rope_scaling[key], list):
rope_scaling[key] = tuple(rope_scaling[key])
if "factor" not in rope_scaling:
rope_scaling["factor"] = self.rope_position_scale
else:
rope_scaling = {
"rope_type": "linear",
"factor": self.rope_position_scale,
}
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
base=self.rope_embedding_base,
rope_scaling=rope_scaling,
)
# blocksparse params
self.blocksparse_block_size = config.blocksparse_block_size
self.blocksparse_num_local_blocks = config.blocksparse_num_local_blocks
self.blocksparse_vert_stride = config.blocksparse_vert_stride
use_dense_attn = (
getattr(self.config, "dense_attention_every_n_layers", None)
and (self.layer_id + 1) % self.config.dense_attention_every_n_layers == 0
)
bs_params = None
if not use_dense_attn:
bs_params = {
"max_seqlen": self.max_position_embeddings,
"num_heads": self.num_heads_per_partition,
"num_kv_heads": self.num_kv_heads_per_partion,
"block_size": self.sparse_block_size,
"local_blocks": self.local_blocks,
"vert_stride": self.vert_stride,
"homo_head": self.homo_heads,
}
self.attn = RadixAttention(
self.num_heads_per_partition,
self.head_dim,
self.scale,
num_kv_heads=self.num_kv_heads_per_partion,
layer_id=layer_id,
prefix=add_prefix("attn", prefix),
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
qkv, _ = self.query_key_value(hidden_states)
qkv = qkv.view(qkv.shape[:-1] + (-1, (self.num_q_per_kv + 2), self.head_dim))
q, k, v = qkv.split([self.num_q_per_kv, 1, 1], dim=-2)
# NOTE: this is required by RotaryEmbed, which indeed does not have to
# TODO: allow 3D QK for rotary forward
q = q.reshape(-1, self.head_dim * self.num_heads_per_partition)
k = k.reshape(-1, self.head_dim * self.num_kv_heads_per_partion)
v = v.reshape(-1, self.head_dim * self.num_kv_heads_per_partion)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v, forward_batch=forward_batch)
output, _ = self.dense(attn_output)
return output
class Phi3SmallDecoderLayer(nn.Module):
def __init__(
self,
config: PretrainedConfig,
layer_id: int,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = Phi3SmallSelfAttention(
config,
layer_id,
quant_config=quant_config,
prefix=add_prefix("self_attn", prefix),
)
self.mlp = Phi3SmallMLP(
config,
quant_config,
prefix=add_prefix("mlp", prefix),
)
self.input_layernorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_epsilon
)
self.post_attention_layernorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_epsilon
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
forward_batch: ForwardBatch,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
forward_batch=forward_batch,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Phi3SmallModel(nn.Module):
def __init__(
self,
config: Phi3Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
prefix=add_prefix("embed_tokens", prefix),
)
self.mup_embedding_multiplier = config.mup_embedding_multiplier
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda idx, prefix: Phi3SmallDecoderLayer(
config,
int(prefix.split(".")[-1]),
quant_config,
prefix=prefix,
),
prefix=add_prefix("layers", prefix),
)
self.final_layernorm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_epsilon
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.LongTensor,
positions: Optional[torch.LongTensor],
forward_batch: ForwardBatch,
inputs_embeds: Optional[torch.Tensor],
) -> Union[torch.Tensor]:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
if (
self.mup_embedding_multiplier is not None
and self.mup_embedding_multiplier > 0.0
):
hidden_states = hidden_states * self.mup_embedding_multiplier
for i in range(self.start_layer, self.end_layer):
layer = self.layers[i]
hidden_states = layer(positions, hidden_states, forward_batch=forward_batch)
hidden_states = self.final_layernorm(hidden_states)
return hidden_states
class Phi3SmallForCausalLM(nn.Module):
_tied_weights_keys = ["lm_head.weight"]
def __init__(
self,
config: Phi3Config,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
):
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = Phi3SmallModel(
config=config,
quant_config=quant_config,
prefix=add_prefix("model", prefix),
)
self.vocab_size = config.vocab_size
self.mup_width_multiplier = config.mup_width_multiplier
self.lm_head = ParallelLMHead(
self.vocab_size,
config.hidden_size,
org_num_embeddings=config.vocab_size,
padding_size=DEFAULT_VOCAB_PADDING_SIZE,
quant_config=quant_config,
prefix=add_prefix("lm_head", prefix),
)
if self.config.tie_word_embeddings:
self.lm_head.weight = self.model.embed_tokens.weight
self.logits_processor = LogitsProcessor(config)
self.pooler = Pooler(pooling_type=PoolingType.LAST, normalize=True)
# tokens in tiktoken but not used
if hasattr(config, "dummy_token_indices"):
device = self.lm_head.weight.device
self.register_buffer(
"dummy_token_indices",
torch.LongTensor(config.dummy_token_indices).to(device),
persistent=False,
)
else:
self.dummy_token_indices = None
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, value):
self.lm_head = value
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def compute_logits(
self,
input_ids: torch.LongTensor,
hidden_states: torch.Tensor,
sampling_metadata,
) -> Optional[torch.Tensor]:
logits = self.logits_processor(
input_ids, self.lm_head, hidden_states, sampling_metadata
)
if self.dummy_token_indices is not None and logits is not None:
logits.index_fill_(-1, self.dummy_token_indices, -torch.inf)
return logits
def forward(
self,
input_ids: torch.LongTensor,
positions: Optional[torch.LongTensor],
forward_batch: ForwardBatch,
inputs_embeds: Optional[torch.Tensor] = None,
get_embedding: bool = False,
) -> LogitsProcessorOutput:
hidden_states = self.model(
input_ids=input_ids,
positions=positions,
forward_batch=forward_batch,
inputs_embeds=inputs_embeds,
)
if not get_embedding:
return self.logits_processor(
input_ids, hidden_states, self.lm_head, forward_batch
)
else:
return self.pooler(hidden_states, forward_batch)
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
if name.endswith(".bias") and name not in params_dict:
continue
if self.config.tie_word_embeddings and "lm_head.weight" in name:
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
EntryClass = Phi3SmallForCausalLM