319 lines
10 KiB
Python
319 lines
10 KiB
Python
# Copyright 2023-2024 SGLang Team
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
# Adapted from
|
|
# https://github.com/vllm-project/vllm/blob/c7f2cf2b7f67bce5842fedfdba508440fe257375/vllm/model_executor/models/qwen.py#L1
|
|
|
|
from typing import Any, Dict, Iterable, Optional, Tuple
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import PretrainedConfig
|
|
|
|
from sglang.srt.distributed import get_tensor_model_parallel_world_size
|
|
from sglang.srt.layers.activation import SiluAndMul
|
|
from sglang.srt.layers.layernorm import RMSNorm
|
|
from sglang.srt.layers.linear import (
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from sglang.srt.layers.logits_processor import LogitsProcessor
|
|
from sglang.srt.layers.quantization.base_config import QuantizationConfig
|
|
from sglang.srt.layers.radix_attention import RadixAttention
|
|
from sglang.srt.layers.rotary_embedding import get_rope
|
|
from sglang.srt.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
|
|
from sglang.srt.model_loader.weight_utils import default_weight_loader
|
|
from sglang.srt.utils import add_prefix
|
|
|
|
|
|
class QWenMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str = "silu",
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size,
|
|
2 * [intermediate_size],
|
|
bias=False,
|
|
gather_output=False,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("gate_up_proj", prefix),
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=False,
|
|
input_is_parallel=True,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("c_proj", prefix),
|
|
)
|
|
if hidden_act != "silu":
|
|
raise ValueError(
|
|
f"Unsupported activation: {hidden_act}. "
|
|
"Only silu is supported for now."
|
|
)
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x):
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.c_proj(x)
|
|
return x
|
|
|
|
|
|
class QWenAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
max_position_embeddings: int,
|
|
layer_id: int = 0,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: Optional[Dict[str, Any]] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
|
self.num_heads = self.total_num_heads // tensor_model_parallel_world_size
|
|
self.head_dim = hidden_size // self.total_num_heads
|
|
|
|
# pylint: disable=invalid-name
|
|
self.c_attn = QKVParallelLinear(
|
|
hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("c_attn", prefix),
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
input_is_parallel=True,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("c_proj", prefix),
|
|
)
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
base=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
)
|
|
self.scaling = self.head_dim**-0.5
|
|
self.attn = RadixAttention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_heads,
|
|
layer_id=layer_id,
|
|
prefix=add_prefix("attn", prefix),
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.c_attn(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v, forward_batch)
|
|
output, _ = self.c_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class QWenBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
layer_id,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
self.attn = QWenAttention(
|
|
config.hidden_size,
|
|
config.num_attention_heads,
|
|
config.max_position_embeddings,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
layer_id=layer_id,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("attn", prefix),
|
|
)
|
|
|
|
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
self.mlp = QWenMLP(
|
|
config.hidden_size,
|
|
config.intermediate_size // 2,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix("mlp", prefix),
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
# Self Attention
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
hidden_states = self.attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
forward_batch=forward_batch,
|
|
)
|
|
hidden_states = residual + hidden_states
|
|
|
|
# Fully Connected
|
|
residual = hidden_states
|
|
hidden_states = self.ln_2(hidden_states)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = residual + hidden_states
|
|
return hidden_states
|
|
|
|
|
|
class QWenModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.vocab_size = config.vocab_size
|
|
|
|
vocab_size = ((config.vocab_size + 63) // 64) * 64
|
|
self.wte = VocabParallelEmbedding(
|
|
vocab_size,
|
|
config.hidden_size,
|
|
prefix=add_prefix("wte", prefix),
|
|
)
|
|
self.h = nn.ModuleList(
|
|
[
|
|
QWenBlock(
|
|
config,
|
|
i,
|
|
quant_config=quant_config,
|
|
prefix=add_prefix(f"h.{i}", prefix),
|
|
)
|
|
for i in range(config.num_hidden_layers)
|
|
]
|
|
)
|
|
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
) -> torch.Tensor:
|
|
hidden_states = self.wte(input_ids)
|
|
for i in range(len(self.h)):
|
|
layer = self.h[i]
|
|
hidden_states = layer(
|
|
positions,
|
|
hidden_states,
|
|
forward_batch,
|
|
)
|
|
hidden_states = self.ln_f(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class QWenLMHeadModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.config = config
|
|
self.transformer = QWenModel(
|
|
config, quant_config=quant_config, prefix=add_prefix("transformer", prefix)
|
|
)
|
|
vocab_size = ((config.vocab_size + 63) // 64) * 64
|
|
self.lm_head = ParallelLMHead(
|
|
vocab_size, config.hidden_size, prefix=add_prefix("lm_head", prefix)
|
|
)
|
|
self.logits_processor = LogitsProcessor(config)
|
|
|
|
@torch.no_grad()
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
forward_batch: ForwardBatch,
|
|
):
|
|
hidden_states = self.transformer(input_ids, positions, forward_batch)
|
|
return self.logits_processor(
|
|
input_ids, hidden_states, self.lm_head, forward_batch
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("gate_up_proj", "w2", 0),
|
|
("gate_up_proj", "w1", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
|
|
|
|
EntryClass = QWenLMHeadModel
|