sglang0.4.5.post1/python/sglang/srt/openai_api/adapter.py

1774 lines
70 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Conversion between OpenAI APIs and native SRT APIs"""
import asyncio
import json
import logging
import os
import time
import uuid
from http import HTTPStatus
from typing import Dict, List
from fastapi import HTTPException, Request, UploadFile
from fastapi.responses import ORJSONResponse, StreamingResponse
from pydantic import ValidationError
from sglang.srt.code_completion_parser import (
generate_completion_prompt_from_request,
is_completion_template_defined,
)
from sglang.srt.conversation import (
Conversation,
SeparatorStyle,
chat_template_exists,
generate_chat_conv,
generate_embedding_convs,
register_conv_template,
)
from sglang.srt.function_call_parser import FunctionCallParser
from sglang.srt.managers.io_struct import EmbeddingReqInput, GenerateReqInput
from sglang.srt.openai_api.protocol import (
BatchRequest,
BatchResponse,
ChatCompletionRequest,
ChatCompletionResponse,
ChatCompletionResponseChoice,
ChatCompletionResponseStreamChoice,
ChatCompletionStreamResponse,
ChatCompletionTokenLogprob,
ChatMessage,
ChoiceLogprobs,
CompletionRequest,
CompletionResponse,
CompletionResponseChoice,
CompletionResponseStreamChoice,
CompletionStreamResponse,
DeltaMessage,
EmbeddingObject,
EmbeddingRequest,
EmbeddingResponse,
ErrorResponse,
FileDeleteResponse,
FileRequest,
FileResponse,
FunctionResponse,
LogProbs,
MultimodalEmbeddingInput,
ToolCall,
TopLogprob,
UsageInfo,
)
from sglang.srt.reasoning_parser import ReasoningParser
from sglang.utils import convert_json_schema_to_str, get_exception_traceback
logger = logging.getLogger(__name__)
chat_template_name = None
class FileMetadata:
def __init__(self, filename: str, purpose: str):
self.filename = filename
self.purpose = purpose
# In-memory storage for batch jobs and files
batch_storage: Dict[str, BatchResponse] = {}
file_id_request: Dict[str, FileMetadata] = {}
file_id_response: Dict[str, FileResponse] = {}
# map file id to file path in SGLang backend
file_id_storage: Dict[str, str] = {}
# backend storage directory
storage_dir = None
def create_error_response(
message: str,
err_type: str = "BadRequestError",
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
):
error = ErrorResponse(message=message, type=err_type, code=status_code.value)
return ORJSONResponse(content=error.model_dump(), status_code=error.code)
def create_streaming_error_response(
message: str,
err_type: str = "BadRequestError",
status_code: HTTPStatus = HTTPStatus.BAD_REQUEST,
) -> str:
error = ErrorResponse(message=message, type=err_type, code=status_code.value)
json_str = json.dumps({"error": error.model_dump()})
return json_str
def load_chat_template_for_openai_api(tokenizer_manager, chat_template_arg, model_path):
global chat_template_name
logger.info(
f"Use chat template for the OpenAI-compatible API server: {chat_template_arg}"
)
if not chat_template_exists(chat_template_arg):
if not os.path.exists(chat_template_arg):
raise RuntimeError(
f"Chat template {chat_template_arg} is not a built-in template name "
"or a valid chat template file path."
)
if chat_template_arg.endswith(".jinja"):
with open(chat_template_arg, "r") as f:
chat_template = "".join(f.readlines()).strip("\n")
tokenizer_manager.tokenizer.chat_template = chat_template.replace(
"\\n", "\n"
)
chat_template_name = None
else:
assert chat_template_arg.endswith(
".json"
), "unrecognized format of chat template file"
with open(chat_template_arg, "r") as filep:
template = json.load(filep)
try:
sep_style = SeparatorStyle[template["sep_style"]]
except KeyError:
raise ValueError(
f"Unknown separator style: {template['sep_style']}"
) from None
register_conv_template(
Conversation(
name=template["name"],
system_template=template["system"] + "\n{system_message}",
system_message=template.get("system_message", ""),
roles=(template["user"], template["assistant"]),
sep_style=sep_style,
sep=template.get("sep", "\n"),
stop_str=template["stop_str"],
),
override=True,
)
chat_template_name = template["name"]
else:
chat_template_name = chat_template_arg
# Check chat-template
# TODO:
# 1. Do not import any code from sglang.lang
# 2. For VLM, when chat_template_arg is None, set it automatically by guessing from model_path.
async def v1_files_create(
file: UploadFile, purpose: str, file_storage_path: str = None
):
try:
global storage_dir
if file_storage_path:
storage_dir = file_storage_path
# Read the file content
file_content = await file.read()
# Create an instance of RequestBody
request_body = FileRequest(file=file_content, purpose=purpose)
# Save the file to the sglang_oai_storage directory
os.makedirs(storage_dir, exist_ok=True)
file_id = f"backend_input_file-{uuid.uuid4()}"
filename = f"{file_id}.jsonl"
file_path = os.path.join(storage_dir, filename)
with open(file_path, "wb") as f:
f.write(request_body.file)
# add info to global file map
file_id_request[file_id] = FileMetadata(filename=file.filename, purpose=purpose)
file_id_storage[file_id] = file_path
# Return the response in the required format
response = FileResponse(
id=file_id,
bytes=len(request_body.file),
created_at=int(time.time()),
filename=file.filename,
purpose=request_body.purpose,
)
file_id_response[file_id] = response
return response
except ValidationError as e:
return {"error": "Invalid input", "details": e.errors()}
async def v1_delete_file(file_id: str):
# Retrieve the file job from the in-memory storage
file_response = file_id_response.get(file_id)
if file_response is None:
raise HTTPException(status_code=404, detail="File not found")
file_path = file_id_storage.get(file_id)
if file_path is None:
raise HTTPException(status_code=404, detail="File not found")
os.remove(file_path)
del file_id_response[file_id]
del file_id_storage[file_id]
return FileDeleteResponse(id=file_id, deleted=True)
async def v1_batches(tokenizer_manager, raw_request: Request):
try:
body = await raw_request.json()
batch_request = BatchRequest(**body)
batch_id = f"batch_{uuid.uuid4()}"
# Create an instance of BatchResponse
batch_response = BatchResponse(
id=batch_id,
endpoint=batch_request.endpoint,
input_file_id=batch_request.input_file_id,
completion_window=batch_request.completion_window,
created_at=int(time.time()),
metadata=batch_request.metadata,
)
batch_storage[batch_id] = batch_response
# Start processing the batch asynchronously
asyncio.create_task(process_batch(tokenizer_manager, batch_id, batch_request))
# Return the initial batch_response
return batch_response
except ValidationError as e:
return {"error": "Invalid input", "details": e.errors()}
except Exception as e:
return {"error": str(e)}
async def process_batch(tokenizer_manager, batch_id: str, batch_request: BatchRequest):
try:
# Update the batch status to "in_progress"
batch_storage[batch_id].status = "in_progress"
batch_storage[batch_id].in_progress_at = int(time.time())
# Retrieve the input file content
input_file_request = file_id_request.get(batch_request.input_file_id)
if not input_file_request:
raise ValueError("Input file not found")
# Parse the JSONL file and process each request
input_file_path = file_id_storage.get(batch_request.input_file_id)
with open(input_file_path, "r", encoding="utf-8") as f:
lines = f.readlines()
total_requests = len(lines)
completed_requests = 0
failed_requests = 0
all_ret = []
end_point = batch_storage[batch_id].endpoint
file_request_list = []
all_requests = []
request_ids = []
for line_id, line in enumerate(lines):
request_data = json.loads(line)
file_request_list.append(request_data)
body = request_data["body"]
request_ids.append(f"{batch_id}-req_{line_id}")
# Although streaming is supported for standalone completions, it is not supported in
# batch mode (multiple completions in single request).
if body.get("stream", False):
raise ValueError("Streaming requests are not supported in batch mode")
if end_point == "/v1/chat/completions":
all_requests.append(ChatCompletionRequest(**body))
elif end_point == "/v1/completions":
all_requests.append(CompletionRequest(**body))
if end_point == "/v1/chat/completions":
adapted_request, request = v1_chat_generate_request(
all_requests, tokenizer_manager, request_ids=request_ids
)
elif end_point == "/v1/completions":
adapted_request, request = v1_generate_request(
all_requests, request_ids=request_ids
)
try:
created = int(time.time())
ret = await tokenizer_manager.generate_request(adapted_request).__anext__()
if not isinstance(ret, list):
ret = [ret]
if end_point == "/v1/chat/completions":
responses = v1_chat_generate_response(
request,
ret,
created,
to_file=True,
cache_report=tokenizer_manager.server_args.enable_cache_report,
tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
)
else:
responses = v1_generate_response(
request,
ret,
tokenizer_manager,
created,
to_file=True,
cache_report=tokenizer_manager.server_args.enable_cache_report,
)
except Exception as e:
logger.error(f"error: {get_exception_traceback()}")
responses = []
error_json = {
"id": f"batch_req_{uuid.uuid4()}",
"custom_id": request_data.get("custom_id"),
"response": None,
"error": {"message": str(e)},
}
all_ret.append(error_json)
failed_requests += len(file_request_list)
for idx, response in enumerate(responses):
# the batch_req here can be changed to be named within a batch granularity
response_json = {
"id": f"batch_req_{uuid.uuid4()}",
"custom_id": file_request_list[idx].get("custom_id"),
"response": response,
"error": None,
}
all_ret.append(response_json)
completed_requests += 1
# Write results to a new file
output_file_id = f"backend_result_file-{uuid.uuid4()}"
global storage_dir
output_file_path = os.path.join(storage_dir, f"{output_file_id}.jsonl")
with open(output_file_path, "w", encoding="utf-8") as f:
for ret in all_ret:
f.write(json.dumps(ret) + "\n")
# Update batch response with output file information
retrieve_batch = batch_storage[batch_id]
retrieve_batch.output_file_id = output_file_id
file_id_storage[output_file_id] = output_file_path
file_id_response[output_file_id] = FileResponse(
id=output_file_id,
bytes=os.path.getsize(output_file_path),
created_at=int(time.time()),
filename=f"{output_file_id}.jsonl",
purpose="batch_result",
)
# Update batch status to "completed"
retrieve_batch.status = "completed"
retrieve_batch.completed_at = int(time.time())
retrieve_batch.request_counts = {
"total": total_requests,
"completed": completed_requests,
"failed": failed_requests,
}
except Exception as e:
logger.error(f"error: {e}")
# Update batch status to "failed"
retrieve_batch = batch_storage[batch_id]
retrieve_batch.status = "failed"
retrieve_batch.failed_at = int(time.time())
retrieve_batch.errors = {"message": str(e)}
async def v1_retrieve_batch(batch_id: str):
# Retrieve the batch job from the in-memory storage
batch_response = batch_storage.get(batch_id)
if batch_response is None:
raise HTTPException(status_code=404, detail="Batch not found")
return batch_response
async def v1_cancel_batch(tokenizer_manager, batch_id: str):
# Retrieve the batch job from the in-memory storage
batch_response = batch_storage.get(batch_id)
if batch_response is None:
raise HTTPException(status_code=404, detail="Batch not found")
# Only do cancal when status is "validating" or "in_progress"
if batch_response.status in ["validating", "in_progress"]:
# Start cancelling the batch asynchronously
asyncio.create_task(
cancel_batch(
tokenizer_manager=tokenizer_manager,
batch_id=batch_id,
input_file_id=batch_response.input_file_id,
)
)
# Update batch status to "cancelling"
batch_response.status = "cancelling"
return batch_response
else:
raise HTTPException(
status_code=500,
detail=f"Current status is {batch_response.status}, no need to cancel",
)
async def cancel_batch(tokenizer_manager, batch_id: str, input_file_id: str):
try:
# Update the batch status to "cancelling"
batch_storage[batch_id].status = "cancelling"
# Retrieve the input file content
input_file_request = file_id_request.get(input_file_id)
if not input_file_request:
raise ValueError("Input file not found")
# Parse the JSONL file and process each request
input_file_path = file_id_storage.get(input_file_id)
with open(input_file_path, "r", encoding="utf-8") as f:
lines = f.readlines()
# Cancel requests by request_ids
for line_id in range(len(lines)):
rid = f"{batch_id}-req_{line_id}"
tokenizer_manager.abort_request(rid=rid)
retrieve_batch = batch_storage[batch_id]
retrieve_batch.status = "cancelled"
except Exception as e:
logger.error("error in SGLang:", e)
# Update batch status to "failed"
retrieve_batch = batch_storage[batch_id]
retrieve_batch.status = "failed"
retrieve_batch.failed_at = int(time.time())
retrieve_batch.errors = {"message": str(e)}
async def v1_retrieve_file(file_id: str):
# Retrieve the batch job from the in-memory storage
file_response = file_id_response.get(file_id)
if file_response is None:
raise HTTPException(status_code=404, detail="File not found")
return file_response
async def v1_retrieve_file_content(file_id: str):
file_pth = file_id_storage.get(file_id)
if not file_pth or not os.path.exists(file_pth):
raise HTTPException(status_code=404, detail="File not found")
def iter_file():
with open(file_pth, mode="rb") as file_like:
yield from file_like
return StreamingResponse(iter_file(), media_type="application/octet-stream")
def v1_generate_request(
all_requests: List[CompletionRequest], request_ids: List[str] = None
):
if len(all_requests) > 1:
first_prompt_type = type(all_requests[0].prompt)
for request in all_requests:
assert (
type(request.prompt) is first_prompt_type
), "All prompts must be of the same type in file input settings"
if request.n > 1:
raise ValueError(
"Parallel sampling is not supported for completions from files"
)
prompts = []
sampling_params_list = []
return_logprobs = []
logprob_start_lens = []
top_logprobs_nums = []
lora_paths = []
for request in all_requests:
# NOTE: with openai API, the prompt's logprobs are always not computed
if request.echo and request.logprobs:
logger.warning(
"Echo is not compatible with logprobs. "
"To compute logprobs of input prompt, please use the native /generate API."
)
prompt = request.prompt
if is_completion_template_defined():
prompt = generate_completion_prompt_from_request(request)
prompts.append(prompt)
lora_paths.append(request.lora_path)
if request.echo and request.logprobs:
current_logprob_start_len = 0
else:
current_logprob_start_len = -1
sampling_params_list.append(
{
"temperature": request.temperature,
"max_new_tokens": request.max_tokens,
"min_new_tokens": request.min_tokens,
"stop": request.stop,
"stop_token_ids": request.stop_token_ids,
"top_p": request.top_p,
"top_k": request.top_k,
"min_p": request.min_p,
"presence_penalty": request.presence_penalty,
"frequency_penalty": request.frequency_penalty,
"repetition_penalty": request.repetition_penalty,
"regex": request.regex,
"json_schema": request.json_schema,
"ebnf": request.ebnf,
"n": request.n,
"no_stop_trim": request.no_stop_trim,
"ignore_eos": request.ignore_eos,
"skip_special_tokens": request.skip_special_tokens,
}
)
return_logprobs.append(request.logprobs is not None)
logprob_start_lens.append(current_logprob_start_len)
top_logprobs_nums.append(
request.logprobs if request.logprobs is not None else 0
)
if len(all_requests) == 1:
if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
prompt_kwargs = {"text": prompts[0]}
else:
prompt_kwargs = {"input_ids": prompts[0]}
sampling_params_list = sampling_params_list[0]
return_logprobs = return_logprobs[0]
logprob_start_lens = logprob_start_lens[0]
top_logprobs_nums = top_logprobs_nums[0]
lora_paths = lora_paths[0]
else:
if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
prompt_kwargs = {"text": prompts}
else:
prompt_kwargs = {"input_ids": prompts}
adapted_request = GenerateReqInput(
**prompt_kwargs,
sampling_params=sampling_params_list,
return_logprob=return_logprobs,
top_logprobs_num=top_logprobs_nums,
logprob_start_len=logprob_start_lens,
return_text_in_logprobs=True,
stream=all_requests[0].stream,
rid=request_ids,
lora_path=lora_paths,
)
return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
def v1_generate_response(
request, ret, tokenizer_manager, created, to_file=False, cache_report=False
):
choices = []
echo = False
if (not isinstance(request, list)) and request.echo:
# TODO: handle the case propmt is token ids
if isinstance(request.prompt, list) and isinstance(request.prompt[0], str):
# for the case of multiple str prompts
prompts = request.prompt
elif isinstance(request.prompt, list) and isinstance(request.prompt[0], list):
# for the case of multiple token ids prompts
prompts = [
tokenizer_manager.tokenizer.decode(prompt, skip_special_tokens=True)
for prompt in request.prompt
]
elif isinstance(request.prompt, list) and isinstance(request.prompt[0], int):
# for the case of single token ids prompt
prompts = [
tokenizer_manager.tokenizer.decode(
request.prompt, skip_special_tokens=True
)
]
else:
# for the case of single str prompt
prompts = [request.prompt]
echo = True
for idx, ret_item in enumerate(ret):
text = ret_item["text"]
if isinstance(request, list) and request[idx].echo:
echo = True
text = request[idx].prompt + text
if echo and not isinstance(request, list):
prompt_index = idx // request.n
text = prompts[prompt_index] + text
logprobs = False
if isinstance(request, list) and request[idx].logprobs is not None:
logprobs = True
elif (not isinstance(request, list)) and request.logprobs is not None:
logprobs = True
if logprobs:
if echo:
input_token_logprobs = ret_item["meta_info"]["input_token_logprobs"]
input_top_logprobs = ret_item["meta_info"]["input_top_logprobs"]
else:
input_token_logprobs = None
input_top_logprobs = None
logprobs = to_openai_style_logprobs(
input_token_logprobs=input_token_logprobs,
input_top_logprobs=input_top_logprobs,
output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
output_top_logprobs=ret_item["meta_info"]["output_top_logprobs"],
)
else:
logprobs = None
finish_reason = ret_item["meta_info"]["finish_reason"]
if to_file:
# to make the choise data json serializable
choice_data = {
"index": 0,
"text": text,
"logprobs": logprobs,
"finish_reason": finish_reason["type"] if finish_reason else None,
"matched_stop": (
finish_reason["matched"]
if finish_reason and "matched" in finish_reason
else None
),
}
else:
choice_data = CompletionResponseChoice(
index=idx,
text=text,
logprobs=logprobs,
finish_reason=finish_reason["type"] if finish_reason else None,
matched_stop=(
finish_reason["matched"]
if finish_reason and "matched" in finish_reason
else None
),
)
choices.append(choice_data)
if to_file:
responses = []
for i, choice in enumerate(choices):
response = {
"status_code": 200,
"request_id": ret[i]["meta_info"]["id"],
"body": {
# remain the same but if needed we can change that
"id": ret[i]["meta_info"]["id"],
"object": "text_completion",
"created": created,
"model": request[i].model,
"choices": choice,
"usage": {
"prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
"completion_tokens": ret[i]["meta_info"]["completion_tokens"],
"total_tokens": ret[i]["meta_info"]["prompt_tokens"]
+ ret[i]["meta_info"]["completion_tokens"],
},
"system_fingerprint": None,
},
}
responses.append(response)
return responses
else:
prompt_tokens = sum(
ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
)
completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
response = CompletionResponse(
id=ret[0]["meta_info"]["id"],
model=request.model,
created=created,
choices=choices,
usage=UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
prompt_tokens_details=(
{"cached_tokens": cached_tokens} if cache_report else None
),
),
)
return response
async def v1_completions(tokenizer_manager, raw_request: Request):
request_json = await raw_request.json()
all_requests = [CompletionRequest(**request_json)]
created = int(time.time())
adapted_request, request = v1_generate_request(all_requests)
if adapted_request.stream:
async def generate_stream_resp():
stream_buffers = {}
n_prev_tokens = {}
prompt_tokens = {}
completion_tokens = {}
cached_tokens = {}
try:
async for content in tokenizer_manager.generate_request(
adapted_request, raw_request
):
index = content.get("index", 0)
stream_buffer = stream_buffers.get(index, "")
n_prev_token = n_prev_tokens.get(index, 0)
text = content["text"]
prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
completion_tokens[index] = content["meta_info"]["completion_tokens"]
cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
if not stream_buffer: # The first chunk
if request.echo:
if isinstance(request.prompt, str):
# for the case of single str prompts
prompts = request.prompt
elif isinstance(request.prompt, list):
if isinstance(request.prompt[0], str):
# for the case of multiple str prompts
prompts = request.prompt[index // request.n]
elif isinstance(request.prompt[0], int):
# for the case of single token ids prompt
prompts = tokenizer_manager.tokenizer.decode(
request.prompt, skip_special_tokens=True
)
elif isinstance(request.prompt[0], list) and isinstance(
request.prompt[0][0], int
):
# for the case of multiple token ids prompts
prompts = tokenizer_manager.tokenizer.decode(
request.prompt[index // request.n],
skip_special_tokens=True,
)
# Prepend prompt in response text.
text = prompts + text
if request.logprobs is not None:
# The first chunk and echo is enabled.
if not stream_buffer and request.echo:
input_token_logprobs = content["meta_info"][
"input_token_logprobs"
]
input_top_logprobs = content["meta_info"][
"input_top_logprobs"
]
else:
input_token_logprobs = None
input_top_logprobs = None
logprobs = to_openai_style_logprobs(
input_token_logprobs=input_token_logprobs,
input_top_logprobs=input_top_logprobs,
output_token_logprobs=content["meta_info"][
"output_token_logprobs"
][n_prev_token:],
output_top_logprobs=content["meta_info"][
"output_top_logprobs"
][n_prev_token:],
)
n_prev_token = len(
content["meta_info"]["output_token_logprobs"]
)
else:
logprobs = None
delta = text[len(stream_buffer) :]
stream_buffer = stream_buffer + delta
finish_reason = content["meta_info"]["finish_reason"]
choice_data = CompletionResponseStreamChoice(
index=index,
text=delta,
logprobs=logprobs,
finish_reason=finish_reason["type"] if finish_reason else None,
matched_stop=(
finish_reason["matched"]
if finish_reason and "matched" in finish_reason
else None
),
)
chunk = CompletionStreamResponse(
id=content["meta_info"]["id"],
created=created,
object="text_completion",
choices=[choice_data],
model=request.model,
)
stream_buffers[index] = stream_buffer
n_prev_tokens[index] = n_prev_token
yield f"data: {chunk.model_dump_json()}\n\n"
if request.stream_options and request.stream_options.include_usage:
total_prompt_tokens = sum(
tokens
for i, tokens in prompt_tokens.items()
if i % request.n == 0
)
total_completion_tokens = sum(
tokens for tokens in completion_tokens.values()
)
cache_report = tokenizer_manager.server_args.enable_cache_report
if cache_report:
cached_tokens_sum = sum(
tokens for tokens in cached_tokens.values()
)
prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
else:
prompt_tokens_details = None
usage = UsageInfo(
prompt_tokens=total_prompt_tokens,
completion_tokens=total_completion_tokens,
total_tokens=total_prompt_tokens + total_completion_tokens,
prompt_tokens_details=prompt_tokens_details,
)
final_usage_chunk = CompletionStreamResponse(
id=content["meta_info"]["id"],
created=created,
choices=[],
model=request.model,
usage=usage,
)
final_usage_data = final_usage_chunk.model_dump_json(
exclude_none=True
)
yield f"data: {final_usage_data}\n\n"
except ValueError as e:
error = create_streaming_error_response(str(e))
yield f"data: {error}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(
generate_stream_resp(),
media_type="text/event-stream",
background=tokenizer_manager.create_abort_task(adapted_request),
)
# Non-streaming response.
try:
ret = await tokenizer_manager.generate_request(
adapted_request, raw_request
).__anext__()
except ValueError as e:
return create_error_response(str(e))
if not isinstance(ret, list):
ret = [ret]
response = v1_generate_response(
request,
ret,
tokenizer_manager,
created,
cache_report=tokenizer_manager.server_args.enable_cache_report,
)
return response
def v1_chat_generate_request(
all_requests: List[ChatCompletionRequest],
tokenizer_manager,
request_ids: List[str] = None,
):
input_ids = []
sampling_params_list = []
image_data_list = []
audio_data_list = []
return_logprobs = []
logprob_start_lens = []
top_logprobs_nums = []
modalities_list = []
lora_paths = []
# NOTE: with openai API, the prompt's logprobs are always not computed
for request in all_requests:
# Prep the data needed for the underlying GenerateReqInput:
# - prompt: The full prompt string.
# - stop: Custom stop tokens.
# - image_data: None or a list of image strings (URLs or base64 strings).
# - audio_data: None or a list of audio strings (URLs).
# None skips any image processing in GenerateReqInput.
strict_tag = None
if not isinstance(request.messages, str):
# Apply chat template and its stop strings.
tools = None
if request.tools and request.tool_choice != "none":
request.skip_special_tokens = False
if not isinstance(request.tool_choice, str):
tools = [
item.function.model_dump()
for item in request.tools
if item.function.name == request.tool_choice.function.name
]
else:
tools = [item.function.model_dump() for item in request.tools]
tool_call_parser = tokenizer_manager.server_args.tool_call_parser
parser = FunctionCallParser(request.tools, tool_call_parser)
strict_tag = parser.get_structure_tag()
if chat_template_name is None:
openai_compatible_messages = []
for message in request.messages:
if isinstance(message.content, str):
openai_compatible_messages.append(
{"role": message.role, "content": message.content}
)
else:
content_list = message.dict()["content"]
for content in content_list:
if content["type"] == "text":
openai_compatible_messages.append(
{"role": message.role, "content": content["text"]}
)
if openai_compatible_messages[-1]["role"] == "assistant":
assistant_prefix = openai_compatible_messages[-1]["content"]
openai_compatible_messages = openai_compatible_messages[:-1]
else:
assistant_prefix = None
try:
prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
openai_compatible_messages,
tokenize=True,
add_generation_prompt=True,
tools=tools,
)
except:
# This except branch will be triggered when the chosen model
# has a different tools input format that is not compatible
# with openAI's apply_chat_template tool_call format, like Mistral.
tools = [t if "function" in t else {"function": t} for t in tools]
prompt_ids = tokenizer_manager.tokenizer.apply_chat_template(
openai_compatible_messages,
tokenize=True,
add_generation_prompt=True,
tools=tools,
)
if assistant_prefix:
encoded = tokenizer_manager.tokenizer.encode(assistant_prefix)
if (
encoded
and encoded[0] == tokenizer_manager.tokenizer.bos_token_id
):
encoded = encoded[1:]
prompt_ids += encoded
stop = request.stop
image_data = None
audio_data = None
modalities = []
else:
conv = generate_chat_conv(request, chat_template_name)
prompt = conv.get_prompt()
image_data = conv.image_data
audio_data = conv.audio_data
modalities = conv.modalities
stop = conv.stop_str or []
if request.stop:
if isinstance(request.stop, str):
stop.append(request.stop)
else:
stop.extend(request.stop)
prompt_ids = tokenizer_manager.tokenizer.encode(prompt)
else:
# Use the raw prompt and stop strings if the messages is already a string.
prompt_ids = request.messages
stop = request.stop
image_data = None
audio_data = None
modalities = []
input_ids.append(prompt_ids)
return_logprobs.append(request.logprobs)
logprob_start_lens.append(-1)
top_logprobs_nums.append(request.top_logprobs or 0)
lora_paths.append(request.lora_path)
sampling_params = {
"temperature": request.temperature,
"max_new_tokens": request.max_tokens,
"min_new_tokens": request.min_tokens,
"stop": stop,
"stop_token_ids": request.stop_token_ids,
"top_p": request.top_p,
"top_k": request.top_k,
"min_p": request.min_p,
"presence_penalty": request.presence_penalty,
"frequency_penalty": request.frequency_penalty,
"repetition_penalty": request.repetition_penalty,
"regex": request.regex,
"ebnf": request.ebnf,
"n": request.n,
"no_stop_trim": request.no_stop_trim,
"ignore_eos": request.ignore_eos,
"skip_special_tokens": request.skip_special_tokens,
}
if request.response_format and request.response_format.type == "json_schema":
sampling_params["json_schema"] = convert_json_schema_to_str(
request.response_format.json_schema.schema_
)
elif (
request.response_format and request.response_format.type == "structural_tag"
):
sampling_params["structural_tag"] = convert_json_schema_to_str(
request.response_format.model_dump(by_alias=True)
)
if strict_tag is not None:
if (
sampling_params.get("regex")
or sampling_params.get("ebnf")
or sampling_params.get("structural_tag")
or sampling_params.get("json_schema")
):
logger.warning(
"Constrained decoding is not compatible with tool calls."
)
else:
sampling_params["structural_tag"] = convert_json_schema_to_str(
strict_tag.model_dump(by_alias=True)
)
sampling_params_list.append(sampling_params)
image_data_list.append(image_data)
audio_data_list.append(audio_data)
modalities_list.append(modalities)
if len(all_requests) == 1:
if isinstance(input_ids[0], str):
prompt_kwargs = {"text": input_ids[0]}
else:
prompt_kwargs = {"input_ids": input_ids[0]}
sampling_params_list = sampling_params_list[0]
image_data_list = image_data_list[0]
audio_data_list = audio_data_list[0]
return_logprobs = return_logprobs[0]
logprob_start_lens = logprob_start_lens[0]
top_logprobs_nums = top_logprobs_nums[0]
modalities_list = modalities_list[0]
lora_paths = lora_paths[0]
else:
if isinstance(input_ids[0], str):
prompt_kwargs = {"text": input_ids}
else:
prompt_kwargs = {"input_ids": input_ids}
adapted_request = GenerateReqInput(
**prompt_kwargs,
image_data=image_data_list,
audio_data=audio_data_list,
sampling_params=sampling_params_list,
return_logprob=return_logprobs,
logprob_start_len=logprob_start_lens,
top_logprobs_num=top_logprobs_nums,
stream=all_requests[0].stream,
return_text_in_logprobs=True,
rid=request_ids,
modalities=modalities_list,
lora_path=lora_paths,
)
return adapted_request, all_requests if len(all_requests) > 1 else all_requests[0]
def v1_chat_generate_response(
request,
ret,
created,
to_file=False,
cache_report=False,
tool_call_parser=None,
reasoning_parser=None,
):
choices = []
for idx, ret_item in enumerate(ret):
logprobs = False
if isinstance(request, list) and request[idx].logprobs:
logprobs = True
elif (not isinstance(request, list)) and request.logprobs:
logprobs = True
if logprobs:
logprobs = to_openai_style_logprobs(
output_token_logprobs=ret_item["meta_info"]["output_token_logprobs"],
output_top_logprobs=ret_item["meta_info"].get(
"output_top_logprobs", None
),
)
token_logprobs = []
for token_idx, (token, logprob) in enumerate(
zip(logprobs.tokens, logprobs.token_logprobs)
):
token_bytes = list(token.encode("utf-8"))
top_logprobs = []
if logprobs.top_logprobs:
for top_token, top_logprob in logprobs.top_logprobs[
token_idx
].items():
top_token_bytes = list(top_token.encode("utf-8"))
top_logprobs.append(
TopLogprob(
token=top_token,
bytes=top_token_bytes,
logprob=top_logprob,
)
)
token_logprobs.append(
ChatCompletionTokenLogprob(
token=token,
bytes=token_bytes,
logprob=logprob,
top_logprobs=top_logprobs,
)
)
choice_logprobs = ChoiceLogprobs(content=token_logprobs)
else:
choice_logprobs = None
finish_reason = ret_item["meta_info"]["finish_reason"]
tool_calls = None
text = ret_item["text"]
if isinstance(request, list):
tool_choice = request[idx].tool_choice
tools = request[idx].tools
separate_reasoning = request[idx].separate_reasoning
else:
tool_choice = request.tool_choice
tools = request.tools
separate_reasoning = request.separate_reasoning
if reasoning_parser and separate_reasoning:
try:
parser = ReasoningParser(
model_type=reasoning_parser, stream_reasoning=False
)
reasoning_text, text = parser.parse_non_stream(text)
except Exception as e:
logger.error(f"Exception: {e}")
return create_error_response(
HTTPStatus.BAD_REQUEST,
"Failed to parse reasoning related info to json format!",
)
else:
reasoning_text = None
if tool_choice != "none" and tools:
parser = FunctionCallParser(tools, tool_call_parser)
if parser.has_tool_call(text):
if finish_reason["type"] == "stop":
finish_reason["type"] = "tool_calls"
finish_reason["matched"] = None
try:
text, call_info_list = parser.parse_non_stream(text)
tool_calls = [
ToolCall(
id=str(call_info.tool_index),
function=FunctionResponse(
name=call_info.name, arguments=call_info.parameters
),
)
for call_info in call_info_list
]
except Exception as e:
logger.error(f"Exception: {e}")
return create_error_response(
HTTPStatus.BAD_REQUEST,
"Failed to parse fc related info to json format!",
)
if to_file:
# to make the choice data json serializable
choice_data = {
"index": 0,
"message": {
"role": "assistant",
"content": text if text else None,
"tool_calls": tool_calls,
"reasoning_content": reasoning_text if reasoning_text else None,
},
"logprobs": choice_logprobs.model_dump() if choice_logprobs else None,
"finish_reason": finish_reason["type"] if finish_reason else None,
"matched_stop": (
finish_reason["matched"]
if finish_reason and "matched" in finish_reason
else None
),
}
else:
choice_data = ChatCompletionResponseChoice(
index=idx,
message=ChatMessage(
role="assistant",
content=text if text else None,
tool_calls=tool_calls,
reasoning_content=reasoning_text if reasoning_text else None,
),
logprobs=choice_logprobs,
finish_reason=finish_reason["type"] if finish_reason else None,
matched_stop=(
finish_reason["matched"]
if finish_reason and "matched" in finish_reason
else None
),
)
choices.append(choice_data)
if to_file:
responses = []
for i, choice in enumerate(choices):
response = {
"status_code": 200,
"request_id": ret[i]["meta_info"]["id"],
"body": {
# remain the same but if needed we can change that
"id": ret[i]["meta_info"]["id"],
"object": "chat.completion",
"created": created,
"model": request[i].model,
"choices": choice,
"usage": {
"prompt_tokens": ret[i]["meta_info"]["prompt_tokens"],
"completion_tokens": ret[i]["meta_info"]["completion_tokens"],
"total_tokens": ret[i]["meta_info"]["prompt_tokens"]
+ ret[i]["meta_info"]["completion_tokens"],
},
"system_fingerprint": None,
},
}
responses.append(response)
return responses
else:
prompt_tokens = sum(
ret[i]["meta_info"]["prompt_tokens"] for i in range(0, len(ret), request.n)
)
completion_tokens = sum(item["meta_info"]["completion_tokens"] for item in ret)
cached_tokens = sum(item["meta_info"].get("cached_tokens", 0) for item in ret)
response = ChatCompletionResponse(
id=ret[0]["meta_info"]["id"],
created=created,
model=request.model,
choices=choices,
usage=UsageInfo(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=prompt_tokens + completion_tokens,
prompt_tokens_details=(
{"cached_tokens": cached_tokens} if cache_report else None
),
),
)
return response
async def v1_chat_completions(
tokenizer_manager, raw_request: Request, cache_report=False
):
request_json = await raw_request.json()
all_requests = [ChatCompletionRequest(**request_json)]
created = int(time.time())
adapted_request, request = v1_chat_generate_request(all_requests, tokenizer_manager)
if adapted_request.stream:
parser_dict = {}
reasoning_parser_dict = {}
async def generate_stream_resp():
is_firsts = {}
stream_buffers = {}
n_prev_tokens = {}
prompt_tokens = {}
completion_tokens = {}
cached_tokens = {}
try:
async for content in tokenizer_manager.generate_request(
adapted_request, raw_request
):
index = content.get("index", 0)
text = content["text"]
is_first = is_firsts.get(index, True)
stream_buffer = stream_buffers.get(index, "")
n_prev_token = n_prev_tokens.get(index, 0)
prompt_tokens[index] = content["meta_info"]["prompt_tokens"]
completion_tokens[index] = content["meta_info"]["completion_tokens"]
cached_tokens[index] = content["meta_info"].get("cached_tokens", 0)
if request.logprobs:
logprobs = to_openai_style_logprobs(
output_token_logprobs=content["meta_info"][
"output_token_logprobs"
][n_prev_token:],
output_top_logprobs=content["meta_info"].get(
"output_top_logprobs", []
)[n_prev_token:],
)
n_prev_token = len(
content["meta_info"]["output_token_logprobs"]
)
token_logprobs = []
for token, logprob in zip(
logprobs.tokens, logprobs.token_logprobs
):
token_bytes = list(token.encode("utf-8"))
top_logprobs = []
if logprobs.top_logprobs:
for top_token, top_logprob in logprobs.top_logprobs[
0
].items():
top_token_bytes = list(top_token.encode("utf-8"))
top_logprobs.append(
TopLogprob(
token=top_token,
bytes=top_token_bytes,
logprob=top_logprob,
)
)
token_logprobs.append(
ChatCompletionTokenLogprob(
token=token,
bytes=token_bytes,
logprob=logprob,
top_logprobs=top_logprobs,
)
)
choice_logprobs = ChoiceLogprobs(content=token_logprobs)
else:
choice_logprobs = None
finish_reason = content["meta_info"]["finish_reason"]
finish_reason_type = (
finish_reason["type"] if finish_reason else None
)
if is_first:
# First chunk with role
is_first = False
delta = DeltaMessage(role="assistant")
choice_data = ChatCompletionResponseStreamChoice(
index=index,
delta=delta,
finish_reason=finish_reason_type,
matched_stop=(
finish_reason["matched"]
if finish_reason and "matched" in finish_reason
else None
),
logprobs=choice_logprobs,
)
chunk = ChatCompletionStreamResponse(
id=content["meta_info"]["id"],
created=created,
choices=[choice_data],
model=request.model,
)
yield f"data: {chunk.model_dump_json()}\n\n"
text = content["text"]
delta = text[len(stream_buffer) :]
new_stream_buffer = stream_buffer + delta
if (
tokenizer_manager.server_args.reasoning_parser
and request.separate_reasoning
):
if index not in reasoning_parser_dict:
reasoning_parser_dict[index] = ReasoningParser(
tokenizer_manager.server_args.reasoning_parser,
request.stream_reasoning,
)
reasoning_parser = reasoning_parser_dict[index]
reasoning_text, delta = reasoning_parser.parse_stream_chunk(
delta
)
if reasoning_text:
choice_data = ChatCompletionResponseStreamChoice(
index=index,
delta=DeltaMessage(
reasoning_content=(
reasoning_text if reasoning_text else None
)
),
finish_reason=finish_reason_type,
)
chunk = ChatCompletionStreamResponse(
id=content["meta_info"]["id"],
created=created,
choices=[choice_data],
model=request.model,
)
yield f"data: {chunk.model_dump_json()}\n\n"
if (delta and len(delta) == 0) or not delta:
stream_buffers[index] = new_stream_buffer
is_firsts[index] = is_first
continue
if request.tool_choice != "none" and request.tools:
if index not in parser_dict:
parser_dict[index] = FunctionCallParser(
tools=request.tools,
tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
)
parser = parser_dict[index]
# parse_increment => returns (normal_text, calls)
normal_text, calls = parser.parse_stream_chunk(delta)
# 1) if there's normal_text, output it as normal content
if normal_text:
choice_data = ChatCompletionResponseStreamChoice(
index=index,
delta=DeltaMessage(
content=normal_text if normal_text else None
),
finish_reason=finish_reason_type,
)
chunk = ChatCompletionStreamResponse(
id=content["meta_info"]["id"],
created=created,
choices=[choice_data],
model=request.model,
)
yield f"data: {chunk.model_dump_json()}\n\n"
# 2) if we found calls, we output them as separate chunk(s)
for call_item in calls:
# transform call_item -> FunctionResponse + ToolCall
if finish_reason_type == "stop":
latest_delta_len = 0
if isinstance(call_item.parameters, str):
latest_delta_len = len(call_item.parameters)
expected_call = json.dumps(
parser.multi_format_parser.detectors[0]
.prev_tool_call_arr[index]
.get("arguments", {}),
ensure_ascii=False,
)
actual_call = parser.multi_format_parser.detectors[
0
].streamed_args_for_tool[index]
if latest_delta_len > 0:
actual_call = actual_call[:-latest_delta_len]
remaining_call = expected_call.replace(
actual_call, "", 1
)
call_item.parameters = remaining_call
finish_reason_type = "tool_calls"
tool_call = ToolCall(
id=str(call_item.tool_index),
function=FunctionResponse(
name=call_item.name,
arguments=call_item.parameters,
),
)
choice_data = ChatCompletionResponseStreamChoice(
index=index,
delta=DeltaMessage(tool_calls=[tool_call]),
finish_reason=(
None
if request.stream_options
and request.stream_options.include_usage
else finish_reason_type
), # additional chunk will be return
)
chunk = ChatCompletionStreamResponse(
id=content["meta_info"]["id"],
created=created,
choices=[choice_data],
model=request.model,
)
yield f"data: {chunk.model_dump_json()}\n\n"
stream_buffers[index] = new_stream_buffer
is_firsts[index] = is_first
else:
# No tool calls => just treat this as normal text
if delta or not (
request.stream_options
and request.stream_options.include_usage
):
choice_data = ChatCompletionResponseStreamChoice(
index=index,
delta=DeltaMessage(content=delta if delta else None),
finish_reason=(
None
if request.stream_options
and request.stream_options.include_usage
else finish_reason_type
),
matched_stop=(
finish_reason["matched"]
if finish_reason and "matched" in finish_reason
else None
),
logprobs=choice_logprobs,
)
chunk = ChatCompletionStreamResponse(
id=content["meta_info"]["id"],
created=created,
choices=[choice_data],
model=request.model,
)
yield f"data: {chunk.model_dump_json()}\n\n"
stream_buffers[index] = new_stream_buffer
is_firsts[index] = is_first
if finish_reason_type == "stop" and request.tool_choice != "none":
parser = FunctionCallParser(
tools=request.tools,
tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
)
if parser.has_tool_call(new_stream_buffer):
# if the stream ends with empty string after tool calls
finish_reason_type = "tool_calls"
if request.stream_options and request.stream_options.include_usage:
total_prompt_tokens = sum(
tokens
for i, tokens in prompt_tokens.items()
if i % request.n == 0
)
total_completion_tokens = sum(
tokens for tokens in completion_tokens.values()
)
cache_report = tokenizer_manager.server_args.enable_cache_report
if cache_report:
cached_tokens_sum = sum(
tokens for tokens in cached_tokens.values()
)
prompt_tokens_details = {"cached_tokens": cached_tokens_sum}
else:
prompt_tokens_details = None
usage = UsageInfo(
prompt_tokens=total_prompt_tokens,
completion_tokens=total_completion_tokens,
total_tokens=total_prompt_tokens + total_completion_tokens,
prompt_tokens_details=prompt_tokens_details,
)
else:
usage = None
final_usage_chunk = ChatCompletionStreamResponse(
id=content["meta_info"]["id"],
created=created,
choices=[
ChatCompletionResponseStreamChoice(
index=index,
delta=DeltaMessage(),
finish_reason=finish_reason_type,
)
],
model=request.model,
usage=usage,
)
yield f"data: {final_usage_chunk.model_dump_json()}\n\n"
except ValueError as e:
error = create_streaming_error_response(str(e))
yield f"data: {error}\n\n"
yield "data: [DONE]\n\n"
return StreamingResponse(
generate_stream_resp(),
media_type="text/event-stream",
background=tokenizer_manager.create_abort_task(adapted_request),
)
# Non-streaming response.
try:
ret = await tokenizer_manager.generate_request(
adapted_request, raw_request
).__anext__()
except ValueError as e:
return create_error_response(str(e))
if not isinstance(ret, list):
ret = [ret]
response = v1_chat_generate_response(
request,
ret,
created,
cache_report=tokenizer_manager.server_args.enable_cache_report,
tool_call_parser=tokenizer_manager.server_args.tool_call_parser,
reasoning_parser=tokenizer_manager.server_args.reasoning_parser,
)
return response
def v1_embedding_request(all_requests, tokenizer_manager):
prompts = []
sampling_params_list = []
first_prompt_type = type(all_requests[0].input)
for request in all_requests:
prompt = request.input
assert (
type(prompt) is first_prompt_type
), "All prompts must be of the same type in file input settings"
prompts.append(prompt)
if len(all_requests) == 1:
prompt = prompts[0]
if isinstance(prompt, str) or isinstance(prompt[0], str):
prompt_kwargs = {"text": prompt}
elif isinstance(prompt, list) and isinstance(
prompt[0], MultimodalEmbeddingInput
):
texts = []
images = []
for item in prompt:
# TODO simply use padding for text, we should use a better way to handle this
texts.append(item.text if item.text is not None else "padding")
images.append(item.image if item.image is not None else None)
generate_prompts = []
if chat_template_name is not None:
convs = generate_embedding_convs(texts, images, chat_template_name)
for conv in convs:
generate_prompts.append(conv.get_prompt())
else:
generate_prompts = texts
if len(generate_prompts) == 1:
prompt_kwargs = {"text": generate_prompts[0], "image_data": images[0]}
else:
prompt_kwargs = {"text": generate_prompts, "image_data": images}
else:
prompt_kwargs = {"input_ids": prompt}
else:
if isinstance(prompts[0], str) or isinstance(prompts[0][0], str):
prompt_kwargs = {"text": prompts}
elif isinstance(prompts[0], list) and isinstance(
prompts[0][0], MultimodalEmbeddingInput
):
# TODO: multiple requests
raise NotImplementedError(
"Multiple requests with multimodal inputs are not supported yet"
)
else:
prompt_kwargs = {"input_ids": prompts}
adapted_request = EmbeddingReqInput(
**prompt_kwargs,
)
if len(all_requests) == 1:
return adapted_request, all_requests[0]
return adapted_request, all_requests
def v1_embedding_response(ret, model_path, to_file=False):
embedding_objects = []
prompt_tokens = 0
for idx, ret_item in enumerate(ret):
embedding_objects.append(
EmbeddingObject(
embedding=ret[idx]["embedding"],
index=idx,
)
)
prompt_tokens += ret[idx]["meta_info"]["prompt_tokens"]
return EmbeddingResponse(
data=embedding_objects,
model=model_path,
usage=UsageInfo(
prompt_tokens=prompt_tokens,
total_tokens=prompt_tokens,
),
)
async def v1_embeddings(tokenizer_manager, raw_request: Request):
request_json = await raw_request.json()
all_requests = [EmbeddingRequest(**request_json)]
adapted_request, request = v1_embedding_request(all_requests, tokenizer_manager)
try:
ret = await tokenizer_manager.generate_request(
adapted_request, raw_request
).__anext__()
except ValueError as e:
return create_error_response(str(e))
if not isinstance(ret, list):
ret = [ret]
response = v1_embedding_response(ret, tokenizer_manager.model_path)
return response
def to_openai_style_logprobs(
input_token_logprobs=None,
output_token_logprobs=None,
input_top_logprobs=None,
output_top_logprobs=None,
):
ret_logprobs = LogProbs()
def append_token_logprobs(token_logprobs):
for logprob, _, token_text in token_logprobs:
ret_logprobs.tokens.append(token_text)
ret_logprobs.token_logprobs.append(logprob)
# Not supported yet
ret_logprobs.text_offset.append(-1)
def append_top_logprobs(top_logprobs):
for tokens in top_logprobs:
if tokens is not None:
ret_logprobs.top_logprobs.append(
{token[2]: token[0] for token in tokens}
)
else:
ret_logprobs.top_logprobs.append(None)
if input_token_logprobs is not None:
append_token_logprobs(input_token_logprobs)
if output_token_logprobs is not None:
append_token_logprobs(output_token_logprobs)
if input_top_logprobs is not None:
append_top_logprobs(input_top_logprobs)
if output_top_logprobs is not None:
append_top_logprobs(output_top_logprobs)
return ret_logprobs