95 lines
3.3 KiB
Python
95 lines
3.3 KiB
Python
import torch
|
|
|
|
from sglang.srt.sampling.penaltylib.orchestrator import (
|
|
BatchedPenalizerOrchestrator,
|
|
_BatchedPenalizer,
|
|
)
|
|
|
|
|
|
class BatchedMinNewTokensPenalizer(_BatchedPenalizer):
|
|
"""
|
|
Min new tokens penalizer penalizes tokens based on the length of the output.
|
|
"""
|
|
|
|
def __init__(self, orchestrator: BatchedPenalizerOrchestrator):
|
|
self.orchestrator = orchestrator
|
|
self._is_prepared = False
|
|
|
|
def _is_required(self) -> bool:
|
|
return any(
|
|
req.sampling_params.min_new_tokens > 0 for req in self.orchestrator.reqs()
|
|
)
|
|
|
|
def _prepare(self):
|
|
self.min_new_tokens = torch.tensor(
|
|
data=[
|
|
req.sampling_params.min_new_tokens for req in self.orchestrator.reqs()
|
|
],
|
|
dtype=torch.int32,
|
|
device=self.orchestrator.device,
|
|
).unsqueeze_(1)
|
|
|
|
padded_stop_token_ids = torch.nn.utils.rnn.pad_sequence(
|
|
sequences=[
|
|
torch.tensor(
|
|
data=(
|
|
list(
|
|
(req.sampling_params.stop_token_ids or set())
|
|
| (req.tokenizer.additional_stop_token_ids or set())
|
|
| {req.tokenizer.eos_token_id}
|
|
)
|
|
),
|
|
dtype=torch.int64,
|
|
device=self.orchestrator.device,
|
|
)
|
|
for req in self.orchestrator.reqs()
|
|
],
|
|
batch_first=True,
|
|
padding_value=self.orchestrator.vocab_size,
|
|
)
|
|
self.stop_token_penalties = torch.zeros(
|
|
size=(len(self.orchestrator.reqs()), self.orchestrator.vocab_size + 1),
|
|
dtype=torch.float32,
|
|
device=self.orchestrator.device,
|
|
).scatter_add_(
|
|
dim=1,
|
|
index=padded_stop_token_ids,
|
|
src=torch.full_like(
|
|
input=padded_stop_token_ids,
|
|
dtype=torch.float32,
|
|
fill_value=float("-inf"),
|
|
device=self.orchestrator.device,
|
|
),
|
|
)[
|
|
:, : self.orchestrator.vocab_size
|
|
]
|
|
|
|
self.len_output_tokens = torch.zeros(
|
|
size=(len(self.orchestrator.reqs()), 1),
|
|
dtype=torch.int32,
|
|
device=self.orchestrator.device,
|
|
)
|
|
|
|
def _cumulate_output_tokens(self, output_ids: torch.Tensor):
|
|
self.len_output_tokens += 1
|
|
|
|
def _apply(self, logits: torch.Tensor):
|
|
mask = (self.len_output_tokens < self.min_new_tokens).expand_as(logits)
|
|
logits[mask] += self.stop_token_penalties[mask]
|
|
|
|
def _filter(self, keep_indices: torch.Tensor):
|
|
self.min_new_tokens = self.min_new_tokens[keep_indices]
|
|
self.stop_token_penalties = self.stop_token_penalties[keep_indices]
|
|
self.len_output_tokens = self.len_output_tokens[keep_indices]
|
|
|
|
def _merge(self, their: "BatchedMinNewTokensPenalizer"):
|
|
self.min_new_tokens = torch.cat(
|
|
[self.min_new_tokens, their.min_new_tokens], dim=0
|
|
)
|
|
self.stop_token_penalties = torch.cat(
|
|
[self.stop_token_penalties, their.stop_token_penalties], dim=0
|
|
)
|
|
self.len_output_tokens = torch.cat(
|
|
[self.len_output_tokens, their.len_output_tokens], dim=0
|
|
)
|