sglang0.4.5.post1/python/sglang/srt/sampling/penaltylib/orchestrator.py

198 lines
5.6 KiB
Python

from __future__ import annotations
import abc
from typing import TYPE_CHECKING, Set, Type
import torch
if TYPE_CHECKING:
from sglang.srt.managers.schedule_batch import ScheduleBatch
class BatchedPenalizerOrchestrator:
def __init__(
self,
vocab_size: int,
batch: ScheduleBatch,
penalizers: Set[Type["_BatchedPenalizer"]],
):
self.vocab_size = vocab_size
self.batch = batch
self.device = batch.device
self.penalizers = {Penalizer: Penalizer(self) for Penalizer in penalizers}
is_required = False
for penalizer in self.penalizers.values():
pen_is_required = penalizer.prepare_if_required()
is_required |= pen_is_required
self.is_required = is_required
def reqs(self):
return self.batch.reqs
def cumulate_output_tokens(self, output_ids: torch.Tensor):
"""
Feed the output tokens to the penalizers.
Args:
output_ids (torch.Tensor): The output tokens.
"""
for penalizer in self.penalizers.values():
penalizer.cumulate_output_tokens(output_ids=output_ids)
def apply(self, logits: torch.Tensor) -> torch.Tensor:
"""
Apply the penalizers to the logits.
Note that it may apply the penalizers in-place.
Args:
logits (torch.Tensor): The logits to apply the penalizers to.
Returns:
torch.Tensor: The logits after applying the penalizers.
"""
for penalizer in self.penalizers.values():
penalizer.apply(logits)
def filter(self, keep_indices: torch.Tensor):
"""
Filter the penalizers based on the indices to keep in the batch.
Args:
keep_indices (torch.Tensor): Tensor of indices to keep in the batch.
"""
if not self.is_required:
return
if len(keep_indices) == 0:
self.is_required = False
for penalizer in self.penalizers.values():
penalizer.teardown()
return
is_required = False
for penalizer in self.penalizers.values():
tmp_is_required = penalizer.is_required()
is_required |= tmp_is_required
if tmp_is_required:
penalizer.filter(keep_indices=keep_indices)
else:
penalizer.teardown()
self.is_required = is_required
def merge(self, their: "BatchedPenalizerOrchestrator"):
"""
Merge the penalizers of another orchestrator into this one.
Note that this function **must** be called _before_ self.batch.reqs is updated (filtered).
Each unprepared penalizers would have to be prepared (creating tensors, etc.) first before merging.
This step requires the original batch.reqs, before it gets merged with other batch.reqs.
Args:
their (BatchedPenalizerOrchestrator): The orchestrator to merge into this one.
"""
if not self.is_required and not their.is_required:
return
self.is_required = True
for penalizer, their_penalizer in their.penalizers.items():
self.penalizers[penalizer].merge(their_penalizer)
class _BatchedPenalizer(abc.ABC):
"""
An abstract class for a batched penalizer.
"""
def is_prepared(self) -> bool:
return self._is_prepared
def is_required(self) -> bool:
return self._is_required()
def prepare(self):
if not self._is_prepared:
self._prepare()
self._is_prepared = True
def prepare_if_required(self):
if self._is_required():
self.prepare()
return True
else:
return False
def teardown(self):
self._is_prepared = False
def cumulate_output_tokens(self, output_ids: torch.Tensor):
if not self._is_prepared:
return
self._cumulate_output_tokens(output_ids=output_ids)
def apply(self, logits: torch.Tensor) -> torch.Tensor:
if not self._is_prepared:
return
self._apply(logits=logits)
def filter(self, keep_indices: torch.Tensor):
if not self._is_prepared:
return
self._filter(keep_indices=keep_indices)
def merge(self, their: "_BatchedPenalizer"):
if not self._is_prepared and not their._is_prepared:
return
self.prepare()
their.prepare()
self._merge(their)
@abc.abstractmethod
def _is_required(self) -> bool:
"""
Check if the penalizer is required to be prepared.
"""
pass
@abc.abstractmethod
def _prepare(self):
"""
Prepare the penalizer.
Usually, this is where the penalizer initializes its tensors.
"""
pass
@abc.abstractmethod
def _cumulate_output_tokens(self, output_ids: torch.Tensor):
"""
Cumulate the output tokens.
Orchestrator will call this function to feed the output tokens to the penalizer.
"""
pass
@abc.abstractmethod
def _apply(self, logits: torch.Tensor) -> torch.Tensor:
"""
Apply the penalizer to the logits.
Penalizers can modify the logits in-place if needed.
"""
pass
@abc.abstractmethod
def _filter(self, keep_indices: torch.Tensor):
"""
Filter the penalizer (tensors or underlying data) based on the indices to keep in the batch.
"""
pass
@abc.abstractmethod
def _merge(self, their: "_BatchedPenalizer"):
"""
Merge the penalizer with another penalizer.
"""
pass