198 lines
5.6 KiB
Python
198 lines
5.6 KiB
Python
from __future__ import annotations
|
|
|
|
import abc
|
|
from typing import TYPE_CHECKING, Set, Type
|
|
|
|
import torch
|
|
|
|
if TYPE_CHECKING:
|
|
from sglang.srt.managers.schedule_batch import ScheduleBatch
|
|
|
|
|
|
class BatchedPenalizerOrchestrator:
|
|
def __init__(
|
|
self,
|
|
vocab_size: int,
|
|
batch: ScheduleBatch,
|
|
penalizers: Set[Type["_BatchedPenalizer"]],
|
|
):
|
|
self.vocab_size = vocab_size
|
|
self.batch = batch
|
|
self.device = batch.device
|
|
self.penalizers = {Penalizer: Penalizer(self) for Penalizer in penalizers}
|
|
|
|
is_required = False
|
|
for penalizer in self.penalizers.values():
|
|
pen_is_required = penalizer.prepare_if_required()
|
|
is_required |= pen_is_required
|
|
self.is_required = is_required
|
|
|
|
def reqs(self):
|
|
return self.batch.reqs
|
|
|
|
def cumulate_output_tokens(self, output_ids: torch.Tensor):
|
|
"""
|
|
Feed the output tokens to the penalizers.
|
|
|
|
Args:
|
|
output_ids (torch.Tensor): The output tokens.
|
|
"""
|
|
for penalizer in self.penalizers.values():
|
|
penalizer.cumulate_output_tokens(output_ids=output_ids)
|
|
|
|
def apply(self, logits: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Apply the penalizers to the logits.
|
|
Note that it may apply the penalizers in-place.
|
|
|
|
Args:
|
|
logits (torch.Tensor): The logits to apply the penalizers to.
|
|
|
|
Returns:
|
|
torch.Tensor: The logits after applying the penalizers.
|
|
"""
|
|
for penalizer in self.penalizers.values():
|
|
penalizer.apply(logits)
|
|
|
|
def filter(self, keep_indices: torch.Tensor):
|
|
"""
|
|
Filter the penalizers based on the indices to keep in the batch.
|
|
|
|
Args:
|
|
keep_indices (torch.Tensor): Tensor of indices to keep in the batch.
|
|
"""
|
|
if not self.is_required:
|
|
return
|
|
|
|
if len(keep_indices) == 0:
|
|
self.is_required = False
|
|
for penalizer in self.penalizers.values():
|
|
penalizer.teardown()
|
|
return
|
|
|
|
is_required = False
|
|
for penalizer in self.penalizers.values():
|
|
tmp_is_required = penalizer.is_required()
|
|
is_required |= tmp_is_required
|
|
if tmp_is_required:
|
|
penalizer.filter(keep_indices=keep_indices)
|
|
else:
|
|
penalizer.teardown()
|
|
self.is_required = is_required
|
|
|
|
def merge(self, their: "BatchedPenalizerOrchestrator"):
|
|
"""
|
|
Merge the penalizers of another orchestrator into this one.
|
|
|
|
Note that this function **must** be called _before_ self.batch.reqs is updated (filtered).
|
|
Each unprepared penalizers would have to be prepared (creating tensors, etc.) first before merging.
|
|
This step requires the original batch.reqs, before it gets merged with other batch.reqs.
|
|
|
|
Args:
|
|
their (BatchedPenalizerOrchestrator): The orchestrator to merge into this one.
|
|
"""
|
|
if not self.is_required and not their.is_required:
|
|
return
|
|
|
|
self.is_required = True
|
|
for penalizer, their_penalizer in their.penalizers.items():
|
|
self.penalizers[penalizer].merge(their_penalizer)
|
|
|
|
|
|
class _BatchedPenalizer(abc.ABC):
|
|
"""
|
|
An abstract class for a batched penalizer.
|
|
"""
|
|
|
|
def is_prepared(self) -> bool:
|
|
return self._is_prepared
|
|
|
|
def is_required(self) -> bool:
|
|
return self._is_required()
|
|
|
|
def prepare(self):
|
|
if not self._is_prepared:
|
|
self._prepare()
|
|
self._is_prepared = True
|
|
|
|
def prepare_if_required(self):
|
|
if self._is_required():
|
|
self.prepare()
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def teardown(self):
|
|
self._is_prepared = False
|
|
|
|
def cumulate_output_tokens(self, output_ids: torch.Tensor):
|
|
if not self._is_prepared:
|
|
return
|
|
|
|
self._cumulate_output_tokens(output_ids=output_ids)
|
|
|
|
def apply(self, logits: torch.Tensor) -> torch.Tensor:
|
|
if not self._is_prepared:
|
|
return
|
|
|
|
self._apply(logits=logits)
|
|
|
|
def filter(self, keep_indices: torch.Tensor):
|
|
if not self._is_prepared:
|
|
return
|
|
|
|
self._filter(keep_indices=keep_indices)
|
|
|
|
def merge(self, their: "_BatchedPenalizer"):
|
|
if not self._is_prepared and not their._is_prepared:
|
|
return
|
|
|
|
self.prepare()
|
|
their.prepare()
|
|
self._merge(their)
|
|
|
|
@abc.abstractmethod
|
|
def _is_required(self) -> bool:
|
|
"""
|
|
Check if the penalizer is required to be prepared.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def _prepare(self):
|
|
"""
|
|
Prepare the penalizer.
|
|
Usually, this is where the penalizer initializes its tensors.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def _cumulate_output_tokens(self, output_ids: torch.Tensor):
|
|
"""
|
|
Cumulate the output tokens.
|
|
Orchestrator will call this function to feed the output tokens to the penalizer.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def _apply(self, logits: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Apply the penalizer to the logits.
|
|
Penalizers can modify the logits in-place if needed.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def _filter(self, keep_indices: torch.Tensor):
|
|
"""
|
|
Filter the penalizer (tensors or underlying data) based on the indices to keep in the batch.
|
|
"""
|
|
pass
|
|
|
|
@abc.abstractmethod
|
|
def _merge(self, their: "_BatchedPenalizer"):
|
|
"""
|
|
Merge the penalizer with another penalizer.
|
|
"""
|
|
pass
|