sglang0.4.5.post1/python/sglang/srt/sampling/sampling_batch_info.py

313 lines
12 KiB
Python

from __future__ import annotations
import dataclasses
import logging
import threading
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple
import torch
import sglang.srt.sampling.penaltylib as penaltylib
from sglang.srt.sampling.custom_logit_processor import CustomLogitProcessor
logger = logging.getLogger(__name__)
if TYPE_CHECKING:
from sglang.srt.managers.schedule_batch import ScheduleBatch
@dataclasses.dataclass
class SamplingBatchInfo:
# Basic batched sampling params
temperatures: torch.Tensor
top_ps: torch.Tensor
top_ks: torch.Tensor
min_ps: torch.Tensor
# Whether all requests use greedy sampling
is_all_greedy: bool
# Whether any request needs min_p sampling
need_min_p_sampling: bool
# Masking tensors for grammar-guided structured outputs
vocab_size: int
grammars: Optional[List] = None
vocab_mask: Optional[torch.Tensor] = None
apply_mask_func: Optional[Callable[[torch.Tensor, torch.Tensor], None]] = None
# An event used for overlap schedule
sampling_info_done: Optional[threading.Event] = None
# Penalizer
penalizer_orchestrator: Optional[penaltylib.BatchedPenalizerOrchestrator] = None
linear_penalty: torch.Tensor = None
# Whether any request has custom logit processor
has_custom_logit_processor: bool = False
# Custom parameters
custom_params: Optional[List[Optional[Dict[str, Any]]]] = None
# Custom logit processor
custom_logit_processor: Optional[
Dict[int, Tuple[CustomLogitProcessor, torch.Tensor]]
] = None
# Device
device: str = "cuda"
@classmethod
def from_schedule_batch(cls, batch: ScheduleBatch, vocab_size: int):
reqs = batch.reqs
device = batch.device
temperatures = (
torch.tensor(
[r.sampling_params.temperature for r in reqs],
dtype=torch.float,
)
.view(-1, 1)
.to(device, non_blocking=True)
)
top_ps = torch.tensor(
[r.sampling_params.top_p for r in reqs], dtype=torch.float
).to(device, non_blocking=True)
top_ks = torch.tensor(
[r.sampling_params.top_k for r in reqs], dtype=torch.int32
).to(device, non_blocking=True)
min_ps = torch.tensor(
[r.sampling_params.min_p for r in reqs], dtype=torch.float
).to(device, non_blocking=True)
# Check if any request has custom logit processor
has_custom_logit_processor = (
batch.enable_custom_logit_processor # check the flag first.
and any(r.custom_logit_processor for r in reqs) # then check the requests.
)
if has_custom_logit_processor:
# Merge the same type of custom logit processors together
processor_dict = {}
for i, r in enumerate(reqs):
if r.custom_logit_processor is None:
continue
processor_str = r.custom_logit_processor
if processor_str not in processor_dict:
processor_dict[processor_str] = []
processor_dict[processor_str].append(i)
merged_custom_logit_processor = {
hash(processor_str): (
# The deserialized custom logit processor object
CustomLogitProcessor.from_str(processor_str),
# The mask tensor for the requests that use this custom logit processor
torch.zeros(len(reqs), dtype=torch.bool)
.scatter_(0, torch.tensor(true_indices), True)
.to(device, non_blocking=True),
)
for processor_str, true_indices in processor_dict.items()
}
custom_params = [r.sampling_params.custom_params for r in reqs]
else:
merged_custom_logit_processor = None
custom_params = None
# Each penalizers will do nothing if they evaluate themselves as not required by looking at
# the sampling_params of the requests (See {_is_required()} of each penalizers). So this
# should not add hefty computation overhead other than simple checks.
#
# While we can choose not to even create the class instances if they are not required, this
# could add additional complexity to the {ScheduleBatch} class, especially we need to
# handle {filter_batch()} and {merge_batch()} cases as well.
penalizer_orchestrator = penaltylib.BatchedPenalizerOrchestrator(
vocab_size=vocab_size,
batch=batch,
penalizers={
penaltylib.BatchedFrequencyPenalizer,
penaltylib.BatchedMinNewTokensPenalizer,
penaltylib.BatchedPresencePenalizer,
},
)
ret = cls(
temperatures=temperatures,
top_ps=top_ps,
top_ks=top_ks,
min_ps=min_ps,
is_all_greedy=all(r.sampling_params.top_k <= 1 for r in reqs),
need_min_p_sampling=any(r.sampling_params.min_p > 0 for r in reqs),
vocab_size=vocab_size,
penalizer_orchestrator=penalizer_orchestrator,
has_custom_logit_processor=has_custom_logit_processor,
custom_params=custom_params,
custom_logit_processor=merged_custom_logit_processor,
device=device,
)
return ret
def __len__(self):
return len(self.temperatures)
def update_regex_vocab_mask(self):
if not self.grammars:
self.vocab_mask = None
self.apply_mask_func = None
return
# Find a grammar from the list
first_grammar = next(grammar for grammar in self.grammars if grammar)
# TODO(lianmin): Maybe we can reuse the existing mask?
self.vocab_mask = first_grammar.allocate_vocab_mask(
vocab_size=self.vocab_size,
batch_size=len(self.temperatures),
device=self.device,
)
self.apply_mask_func = (
first_grammar.apply_vocab_mask
) # force to use static method
# Apply the mask
for i, grammar in enumerate(self.grammars):
if grammar and not grammar.finished:
grammar.fill_vocab_mask(self.vocab_mask, i)
# Move the mask to the device if needed
self.vocab_mask = first_grammar.move_vocab_mask(self.vocab_mask, self.device)
def update_penalties(self):
if self.penalizer_orchestrator.is_required:
self.linear_penalty = torch.zeros(
(len(self.temperatures), self.vocab_size),
dtype=torch.float32,
device=self.temperatures.device,
)
self.penalizer_orchestrator.apply(self.linear_penalty)
else:
self.linear_penalty = None
def apply_logits_bias(self, logits: torch.Tensor):
if self.linear_penalty is not None:
# Used in the overlap mode
logits.add_(self.linear_penalty)
if self.penalizer_orchestrator and self.penalizer_orchestrator.is_required:
# Used in the non-overlap mode
self.penalizer_orchestrator.apply(logits)
if self.vocab_mask is not None:
self.apply_mask_func(logits=logits, vocab_mask=self.vocab_mask)
def filter_batch(self, keep_indices: List[int], keep_indices_device: torch.Tensor):
self.penalizer_orchestrator.filter(keep_indices_device)
if self.has_custom_logit_processor:
self._filter_batch_custom_logit_processor(keep_indices, keep_indices_device)
for item in [
"temperatures",
"top_ps",
"top_ks",
"min_ps",
]:
value = getattr(self, item, None)
setattr(self, item, value[keep_indices_device])
def _filter_batch_custom_logit_processor(
self, keep_indices: List[int], keep_indices_device: torch.Tensor
):
"""Filter the custom logit processor and custom params"""
self.custom_logit_processor = {
k: (p, mask[keep_indices_device])
for k, (p, mask) in self.custom_logit_processor.items()
if torch.any(
mask[keep_indices_device]
) # ignore the custom logit processor whose mask is all False
}
self.custom_params = [self.custom_params[i] for i in keep_indices]
# If the custom logit processor is an empty dict, set the flag to False,
# and set the custom logit processor and custom params to None.
if len(self.custom_logit_processor) == 0:
self.custom_logit_processor = None
self.custom_params = None
self.has_custom_logit_processor = False
@staticmethod
def merge_custom_logit_processor(
lhs: Optional[Dict[int, Tuple[CustomLogitProcessor, torch.Tensor]]],
rhs: Optional[Dict[int, Tuple[CustomLogitProcessor, torch.Tensor]]],
bs1: int,
bs2: int,
device: str,
):
if lhs is None and rhs is None:
return None
lhs, rhs = lhs or {}, rhs or {}
keys = set(lhs.keys()).union(set(rhs.keys()))
merged_dict = {}
for k in keys:
# Get the logit processor object
processor = lhs[k][0] if k in lhs else rhs[k][0]
# Get and merge the mask tensors from the two dicts
left_mask = (
lhs[k][1]
if k in lhs
else torch.zeros(bs1, dtype=torch.bool, device=device)
)
right_mask = (
rhs[k][1]
if k in rhs
else torch.zeros(bs2, dtype=torch.bool, device=device)
)
merged_dict[k] = (processor, torch.cat([left_mask, right_mask]))
assert merged_dict[k][1].shape[0] == bs1 + bs2, (
f"The batch size of merged mask ({merged_dict[k][1].shape[0]}) does not match "
f"the sum of the batch sizes of the two masks ({bs1 + bs2})"
f"\n{left_mask=}\n{right_mask=}\n{bs1=}\n{bs2=}"
f"\n{lhs=}\n{rhs=}"
)
return merged_dict
def merge_batch(self, other: "SamplingBatchInfo"):
self.penalizer_orchestrator.merge(other.penalizer_orchestrator)
# Merge the custom logit processors and custom params lists
if self.has_custom_logit_processor or other.has_custom_logit_processor:
# Merge the custom logit processors
self.custom_logit_processor = (
SamplingBatchInfo.merge_custom_logit_processor(
self.custom_logit_processor,
other.custom_logit_processor,
len(self),
len(other),
self.device,
)
)
# Merge the custom params lists
self.custom_params = self.custom_params or [None] * len(self)
other.custom_params = other.custom_params or [None] * len(other)
self.custom_params.extend(other.custom_params)
# Set the flag to True if any of the two has custom logit processor
self.has_custom_logit_processor = True
# Note: becasue the __len()__ operator is defined on the temperatures tensor,
# please make sure any merge operation with len(self) or len(other) is done before
# the merge operation of the temperatures tensor below.
for item in [
"temperatures",
"top_ps",
"top_ks",
"min_ps",
]:
self_val = getattr(self, item, None)
other_val = getattr(other, item, None)
setattr(self, item, torch.cat([self_val, other_val]))
self.is_all_greedy |= other.is_all_greedy
self.need_min_p_sampling |= other.need_min_p_sampling