sglang0.4.5.post1/python/sglang/test/simple_eval_gpqa.py

94 lines
3.1 KiB
Python

# Adapted from https://github.com/openai/simple-evals/
"""
GPQA: A Graduate-Level Google-Proof Q&A Benchmark
David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani, Julian Michael, Samuel R. Bowman
https://arxiv.org/abs/2311.12022
"""
import random
import re
from typing import Optional
import pandas
from sglang.test import simple_eval_common as common
from sglang.test.simple_eval_common import (
ANSWER_PATTERN_MULTICHOICE,
HTML_JINJA,
Eval,
EvalResult,
MessageList,
SamplerBase,
SingleEvalResult,
format_multichoice_question,
)
class GPQAEval(Eval):
def __init__(
self,
filename: str,
num_examples: Optional[int],
num_threads: int,
n_repeats: int = 1,
):
df = pandas.read_csv(filename)
examples = [row.to_dict() for _, row in df.iterrows()]
rng = random.Random(0)
if num_examples:
assert n_repeats == 1, "n_repeats only supported for num_examples"
examples = rng.sample(examples, num_examples)
examples = examples * n_repeats
examples = [
example | {"permutation": rng.sample(range(4), 4)} for example in examples
]
self.examples = examples
self.n_repeats = n_repeats
self.num_threads = num_threads
def __call__(self, sampler: SamplerBase) -> EvalResult:
def fn(row: dict):
choices = [
row["Correct Answer"],
row["Incorrect Answer 1"],
row["Incorrect Answer 2"],
row["Incorrect Answer 3"],
]
choices = [choices[i] for i in row["permutation"]]
correct_index = choices.index(row["Correct Answer"])
correct_answer = "ABCD"[correct_index]
choices_dict = dict(
A=choices[0],
B=choices[1],
C=choices[2],
D=choices[3],
Question=row["Question"],
)
prompt_messages = [
sampler._pack_message(
content=format_multichoice_question(choices_dict), role="user"
)
]
response_text = sampler(prompt_messages)
match = re.search(ANSWER_PATTERN_MULTICHOICE, response_text)
extracted_answer = match.group(1) if match else None
score = 1.0 if extracted_answer == correct_answer else 0.0
html = common.jinja_env.from_string(HTML_JINJA).render(
prompt_messages=prompt_messages,
next_message=dict(content=response_text, role="assistant"),
score=score,
correct_answer=correct_answer,
extracted_answer=extracted_answer,
)
convo = prompt_messages + [dict(content=response_text, role="assistant")]
return SingleEvalResult(
html=html,
score=score,
convo=convo,
metrics={"chars": len(response_text)},
)
results = common.map_with_progress(fn, self.examples, self.num_threads)
return common.aggregate_results(results)