sglang0.4.5.post1/python/sglang/test/test_block_fp8_ep.py

363 lines
11 KiB
Python

import itertools
import random
import unittest
from typing import Any, Callable, Dict, List, Optional, Tuple
import torch
from sglang.srt.layers.moe.ep_moe.kernels import (
grouped_gemm_triton,
post_reorder_triton_kernel,
pre_reorder_triton_kernel,
run_moe_ep_preproess,
silu_and_mul_triton_kernel,
)
from sglang.srt.layers.moe.topk import select_experts
from sglang.test.test_utils import CustomTestCase
# For test
def ep_moe(
hidden_states: torch.Tensor,
w1: torch.Tensor,
w2: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
# ep config
num_experts: int = 256,
fp8_dtype: torch.types = torch.float8_e4m3fn,
num_experts_per_partition: int = 128,
start_expert_id: int = 0,
end_expert_id: int = 127,
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
use_fp8_w8a8: bool = False,
w1_scale_inv: Optional[torch.Tensor] = None,
w2_scale_inv: Optional[torch.Tensor] = None,
block_shape: Optional[List[int]] = None,
):
use_blockwise_fp8 = block_shape is not None
topk_weights, topk_ids = select_experts(
hidden_states=hidden_states,
router_logits=router_logits,
top_k=top_k,
use_grouped_topk=use_grouped_topk,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
# correction_bias=correction_bias, #skip this in test
custom_routing_function=custom_routing_function,
)
reorder_topk_ids, src2dst, seg_indptr = run_moe_ep_preproess(topk_ids, num_experts)
gateup_input = torch.empty(
(int(hidden_states.shape[0] * top_k), hidden_states.shape[1]),
device=hidden_states.device,
dtype=(
fp8_dtype
if (use_fp8_w8a8 and not use_blockwise_fp8)
else hidden_states.dtype
),
)
if use_fp8_w8a8 and not use_blockwise_fp8:
max_value = (
torch.max(hidden_states).repeat(num_experts_per_partition).to(torch.float32)
)
w1_input_scale = max_value / torch.finfo(fp8_dtype).max
else:
w1_input_scale = None
# PreReorder
pre_reorder_triton_kernel[(hidden_states.shape[0],)](
hidden_states,
gateup_input,
src2dst,
topk_ids,
w1_input_scale,
start_expert_id,
end_expert_id,
top_k,
hidden_states.shape[1],
BLOCK_SIZE=512,
)
seg_indptr_cur_rank = seg_indptr[start_expert_id : end_expert_id + 2]
weight_indices_cur_rank = torch.arange(
0,
num_experts_per_partition,
device=hidden_states.device,
dtype=torch.int64,
)
# GroupGemm-0
gateup_output = torch.empty(
gateup_input.shape[0],
w1.shape[1],
device=hidden_states.device,
dtype=hidden_states.dtype,
)
gateup_output = grouped_gemm_triton(
a=gateup_input,
b=w1,
c=gateup_output,
batch_size=num_experts_per_partition,
weight_column_major=True,
seg_indptr=seg_indptr_cur_rank,
weight_indices=weight_indices_cur_rank,
use_fp8_w8a8=use_fp8_w8a8,
scale_a=w1_input_scale,
scale_b=w1_scale_inv,
block_shape=block_shape,
)
# Act
down_input = torch.empty(
gateup_output.shape[0],
gateup_output.shape[1] // 2,
device=gateup_output.device,
dtype=(
fp8_dtype
if (use_fp8_w8a8 and not use_blockwise_fp8)
else hidden_states.dtype
),
)
if use_fp8_w8a8 and not use_blockwise_fp8:
w2_input_scale = torch.ones(
num_experts_per_partition,
dtype=torch.float32,
device=hidden_states.device,
)
else:
w2_input_scale = None
silu_and_mul_triton_kernel[(gateup_output.shape[0],)](
gateup_output,
down_input,
gateup_output.shape[1],
reorder_topk_ids,
w2_input_scale,
start_expert_id,
end_expert_id,
BLOCK_SIZE=512,
)
# GroupGemm-1
down_output = torch.empty(
down_input.shape[0],
w2.shape[1],
device=hidden_states.device,
dtype=hidden_states.dtype,
)
down_output = grouped_gemm_triton(
a=down_input,
b=w2,
c=down_output,
batch_size=num_experts_per_partition,
weight_column_major=True,
seg_indptr=seg_indptr_cur_rank,
weight_indices=weight_indices_cur_rank,
use_fp8_w8a8=use_fp8_w8a8,
scale_a=w2_input_scale,
scale_b=w2_scale_inv,
block_shape=block_shape,
)
# PostReorder
output = torch.empty_like(hidden_states)
post_reorder_triton_kernel[(hidden_states.size(0),)](
down_output,
output,
src2dst,
topk_ids,
topk_weights,
start_expert_id,
end_expert_id,
top_k,
hidden_states.size(1),
BLOCK_SIZE=512,
)
return output
# test util
def block_dequant(
x_q_block: torch.Tensor,
x_s: torch.Tensor,
block_size: List[int],
) -> Tuple[torch.Tensor, torch.Tensor]:
"""This function converts block-wise quantization to tensor-wise quantization.
The inputs are block-wise quantization tensor `x_q_block`, block-wise quantization scale
and the block size.
The outputs are tensor-wise quantization tensor and tensor-wise quantization scale.
Note only float8 is supported for now.
"""
# process 3D tensor
if x_q_block.dim() == 3:
batch_size = x_q_block.size(0)
return torch.stack(
[block_dequant(x_q_block[b], x_s[b], block_size) for b in range(batch_size)]
)
block_n, block_k = block_size[0], block_size[1]
n, k = x_q_block.shape
n_tiles = (n + block_n - 1) // block_n
k_tiles = (k + block_k - 1) // block_k
assert n_tiles == x_s.shape[0]
assert k_tiles == x_s.shape[1]
x_dq_block = x_q_block.to(torch.float32)
x_dq_block_tiles = [
[
x_dq_block[
j * block_n : min((j + 1) * block_n, n),
i * block_k : min((i + 1) * block_k, k),
]
for i in range(k_tiles)
]
for j in range(n_tiles)
]
for i in range(k_tiles):
for j in range(n_tiles):
x_dq_block_tiles[j][i][:, :] = x_dq_block_tiles[j][i] * x_s[j][i]
return x_dq_block
class TestW8A8BlockFP8EPMoE(CustomTestCase):
DTYPES = [torch.half, torch.bfloat16]
M = [1, 222, 1024, 2048]
N = [128, 1024, 2048]
K = [256, 4096, 5120]
E = [8, 16]
ep_size = [2, 4]
TOP_KS = [2, 4]
BLOCK_SIZE = [[128, 128]]
SEEDS = [0]
@classmethod
def setUpClass(cls):
if not torch.cuda.is_available():
raise unittest.SkipTest("CUDA is not available")
torch.set_default_device("cuda")
def _w8a8_block_fp8_ep_moe(
self, M, N, K, E, ep_size, topk, block_size, dtype, seed
):
torch.manual_seed(seed)
random.seed(seed)
# NOTE(HandH1998): to avoid overflow when out_dtype = torch.half
factor_for_scale = 1e-2
fp8_info = torch.finfo(torch.float8_e4m3fn)
fp8_max, fp8_min = fp8_info.max, fp8_info.min
a = torch.randn((M, K), dtype=dtype) / 10
w1_fp32 = (torch.rand((E, 2 * N, K), dtype=dtype) - 0.5) * 2 * fp8_max
w1 = w1_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
w2_fp32 = (torch.rand((E, K, N), dtype=dtype) - 0.5) * 2 * fp8_max
w2 = w2_fp32.clamp(min=fp8_min, max=fp8_max).to(torch.float8_e4m3fn)
block_n, block_k = block_size[0], block_size[1]
n_tiles_w1 = (2 * N + block_n - 1) // block_n
n_tiles_w2 = (K + block_n - 1) // block_n
k_tiles_w1 = (K + block_k - 1) // block_k
k_tiles_w2 = (N + block_k - 1) // block_k
w1_s = (
torch.rand((E, n_tiles_w1, k_tiles_w1), dtype=torch.float32)
* factor_for_scale
)
w2_s = (
torch.rand((E, n_tiles_w2, k_tiles_w2), dtype=torch.float32)
* factor_for_scale
)
w1_ref = block_dequant(w1, w1_s, block_size).to(dtype)
w2_ref = block_dequant(w2, w2_s, block_size).to(dtype)
score = torch.randn((M, E), dtype=dtype)
num_experts_per_partition = E // ep_size
cur_rank = random.randint(0, ep_size - 1)
start_id = cur_rank * num_experts_per_partition
end_id = start_id + num_experts_per_partition - 1
with torch.inference_mode():
out = ep_moe(
hidden_states=a,
w1=w1,
w2=w2,
router_logits=score,
top_k=topk,
renormalize=False,
use_fp8_w8a8=True,
w1_scale_inv=w1_s,
w2_scale_inv=w2_s,
block_shape=block_size,
num_experts=E,
num_experts_per_partition=num_experts_per_partition,
start_expert_id=start_id,
end_expert_id=end_id,
)
ref_out = ep_moe(
hidden_states=a,
w1=w1_ref,
w2=w2_ref,
router_logits=score,
top_k=topk,
renormalize=False,
use_fp8_w8a8=False,
w1_scale_inv=None,
w2_scale_inv=None,
block_shape=None,
num_experts=E,
num_experts_per_partition=num_experts_per_partition,
start_expert_id=start_id,
end_expert_id=end_id,
)
self.assertTrue(
torch.mean(torch.abs(out.to(torch.float32) - ref_out.to(torch.float32)))
/ (torch.mean(torch.abs(ref_out.to(torch.float32))) + 1e-6)
< 0.06
)
def test_w8a8_block_fp8_ep_moe(self):
for params in itertools.product(
self.M,
self.N,
self.K,
self.E,
self.ep_size,
self.TOP_KS,
self.BLOCK_SIZE,
self.DTYPES,
self.SEEDS,
):
with self.subTest(
M=params[0],
N=params[1],
K=params[2],
E=params[3],
ep_size=params[4],
topk=params[5],
block_size=params[6],
dtype=params[7],
seed=params[8],
):
self._w8a8_block_fp8_ep_moe(*params)
torch.cuda.empty_cache()
if __name__ == "__main__":
unittest.main(verbosity=2)