sglang0.4.5.post1/sgl-kernel/benchmark/bench_per_token_group_quant...

219 lines
6.4 KiB
Python

import itertools
from typing import Tuple
import torch
import triton
import triton.language as tl
from sgl_kernel import sgl_per_token_group_quant_fp8, sgl_per_token_group_quant_int8
from sglang.srt.utils import is_hip
is_hip_ = is_hip()
fp8_type_ = torch.float8_e4m3fnuz if is_hip_ else torch.float8_e4m3fn
@triton.jit
def _per_token_group_quant_8bit(
# Pointers to inputs and output
y_ptr,
y_q_ptr,
y_s_ptr,
# Stride of input
y_stride,
# Collums of input
N,
# Avoid to divide zero
eps,
# Information for 8bit data type (int8 or fp8_type_)
max_8bit,
min_8bit,
# Meta-parameters
BLOCK: tl.constexpr,
):
"""A Triton-accelerated function to perform per-token-group quantization on a
tensor.
This function converts the tensor values into 8bit values.
"""
# Map the program id to the row of X and Y it should compute.
g_id = tl.program_id(0)
y_ptr += g_id * y_stride
y_q_ptr += g_id * y_stride
y_s_ptr += g_id
cols = tl.arange(0, BLOCK) # N <= BLOCK
mask = cols < N
y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
# Quant
_absmax = tl.maximum(tl.max(tl.abs(y)), eps)
y_s = _absmax / max_8bit
y_q = tl.clamp(y / y_s, min_8bit, max_8bit).to(y_q_ptr.dtype.element_ty)
tl.store(y_q_ptr + cols, y_q, mask=mask)
tl.store(y_s_ptr, y_s)
def triton_per_token_group_quant_8bit(
x: torch.Tensor,
group_size: int,
dst_dtype: torch.dtype,
eps: float = 1e-10,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Function to perform per-token-group quantization on an input tensor `x`.
It converts the tensor values into signed float8 values and returns the
quantized tensor along with the scaling factor used for quantization.
Args:
x: The input tenosr with ndim >= 2.
group_size: The group size used for quantization.
eps: The minimum to avoid dividing zero.
dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn` is supported for now.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the scaling factor for quantization.
"""
assert (
x.shape[-1] % group_size == 0
), "the last dimension of `x` cannot be divisible by `group_size`"
assert x.is_contiguous(), "`x` is not contiguous"
if dst_dtype == torch.int8:
iinfo = torch.iinfo(dst_dtype)
max_8bit = iinfo.max
min_8bit = iinfo.min
else:
finfo = torch.finfo(dst_dtype)
max_8bit = finfo.max
min_8bit = finfo.min
x_q = torch.empty_like(x, device=x.device, dtype=dst_dtype)
M = x.numel() // group_size
N = group_size
x_s = torch.empty(
x.shape[:-1] + (x.shape[-1] // group_size,),
device=x.device,
dtype=torch.float32,
)
BLOCK = triton.next_power_of_2(N)
# heuristics for number of warps
num_warps = min(max(BLOCK // 256, 1), 8)
num_stages = 1
_per_token_group_quant_8bit[(M,)](
x,
x_q,
x_s,
group_size,
N,
eps,
max_8bit,
min_8bit,
BLOCK=BLOCK,
num_warps=num_warps,
num_stages=num_stages,
)
return x_q, x_s
def sglang_per_token_group_quant_8bit(
x: torch.Tensor,
group_size: int,
dst_dtype: torch.dtype,
eps: float = 1e-10,
):
assert (
x.shape[-1] % group_size == 0
), "the last dimension of `x` cannot be divisible by `group_size`"
assert x.is_contiguous(), "`x` is not contiguous"
x_q = torch.empty_like(x, device=x.device, dtype=dst_dtype)
x_s = torch.empty(
x.shape[:-1] + (x.shape[-1] // group_size,),
device=x.device,
dtype=torch.float32,
)
if dst_dtype == torch.int8:
iinfo = torch.iinfo(dst_dtype)
int8_max = iinfo.max
int8_min = iinfo.min
sgl_per_token_group_quant_int8(x, x_q, x_s, group_size, eps, int8_min, int8_max)
else:
f8_info = torch.finfo(dst_dtype)
fp8_max = f8_info.max
fp8_min = f8_info.min
sgl_per_token_group_quant_fp8(x, x_q, x_s, group_size, eps, fp8_min, fp8_max)
return x_q, x_s
def calculate_diff(batch_size, seq_len, group_size, dst_dtype):
device = torch.device("cuda")
hidden_dim = group_size * 2
x = torch.randn(batch_size, seq_len, hidden_dim, device=device, dtype=torch.float16)
x_q_triton, x_s_triton = triton_per_token_group_quant_8bit(
x.clone(), group_size, dst_dtype
)
x_q_sglang, x_s_sglang = sglang_per_token_group_quant_8bit(
x.clone(), group_size, dst_dtype
)
if torch.allclose(
x_q_triton.to(torch.float32), x_q_sglang.to(torch.float32), rtol=1e-3, atol=1e-5
) and torch.allclose(x_s_triton, x_s_sglang, rtol=1e-3, atol=1e-5):
print(f"{dst_dtype} implementations match")
else:
print("❌ Implementations differ")
batch_size_range = [1, 2, 4, 8, 16, 32, 64]
seq_len_range = [64, 128, 256, 512, 1024, 2048]
group_size_range = [128] # For DeepSeek V3/R1
dst_dtype_range = [torch.int8, fp8_type_]
configs = list(
itertools.product(
batch_size_range, seq_len_range, group_size_range, dst_dtype_range
)
)
@triton.testing.perf_report(
triton.testing.Benchmark(
x_names=["batch_size", "seq_len", "group_size", "dst_dtype"],
x_vals=configs,
line_arg="provider",
line_vals=["triton", "sglang"],
line_names=["Triton", "SGL Kernel"],
styles=[("blue", "-"), ("green", "-")],
ylabel="us",
plot_name="per-token-group-quant-8bit-performance",
args={},
)
)
def benchmark(batch_size, seq_len, group_size, dst_dtype, provider):
device = torch.device("cuda")
hidden_dim = 7168
x = torch.randn(batch_size, seq_len, hidden_dim, device=device, dtype=torch.float16)
quantiles = [0.5, 0.2, 0.8]
if provider == "triton":
fn = lambda: triton_per_token_group_quant_8bit(x.clone(), group_size, dst_dtype)
elif provider == "sglang":
fn = lambda: sglang_per_token_group_quant_8bit(x.clone(), group_size, dst_dtype)
ms, min_ms, max_ms = triton.testing.do_bench(fn, quantiles=quantiles)
return 1000 * ms, 1000 * max_ms, 1000 * min_ms
if __name__ == "__main__":
calculate_diff(batch_size=4, seq_len=128, group_size=64, dst_dtype=torch.int8)
calculate_diff(batch_size=4, seq_len=128, group_size=64, dst_dtype=fp8_type_)
benchmark.run(print_data=True)