168 lines
5.3 KiB
Plaintext
168 lines
5.3 KiB
Plaintext
#include <ATen/cuda/CUDAContext.h>
|
|
#include <c10/util/Float8_e4m3fn.h>
|
|
|
|
#include <cmath>
|
|
#include <flashinfer/vec_dtypes.cuh>
|
|
|
|
#include "utils.h"
|
|
|
|
__device__ __forceinline__ float GroupReduceMax(float val, const int tid) {
|
|
unsigned mask = 0xffff;
|
|
|
|
val = fmaxf(val, __shfl_xor_sync(mask, val, 8));
|
|
val = fmaxf(val, __shfl_xor_sync(mask, val, 4));
|
|
val = fmaxf(val, __shfl_xor_sync(mask, val, 2));
|
|
val = fmaxf(val, __shfl_xor_sync(mask, val, 1));
|
|
return val;
|
|
}
|
|
|
|
template <typename T, typename DST_DTYPE>
|
|
__global__ void per_token_group_quant_8bit_kernel(
|
|
const T* __restrict__ input,
|
|
void* __restrict__ output_q,
|
|
float* __restrict__ output_s,
|
|
const int group_size,
|
|
const int num_groups,
|
|
const int groups_per_block,
|
|
const float eps,
|
|
const float min_8bit,
|
|
const float max_8bit) {
|
|
const int threads_per_group = 16;
|
|
const int local_group_id = threadIdx.x / threads_per_group;
|
|
const int lane_id = threadIdx.x % threads_per_group;
|
|
|
|
const int block_group_id = blockIdx.x * groups_per_block;
|
|
const int block_group_offset = (block_group_id + local_group_id) * group_size;
|
|
|
|
float local_absmax = eps;
|
|
|
|
const T* group_input = input + block_group_offset;
|
|
DST_DTYPE* group_output = static_cast<DST_DTYPE*>(output_q) + block_group_offset;
|
|
float* scale_output = output_s + (block_group_id + local_group_id);
|
|
|
|
constexpr uint32_t vec_size = 16 / sizeof(T);
|
|
using vec_t = flashinfer::vec_t<T, vec_size>;
|
|
|
|
const int32_t num_vec_elems = group_size / vec_size;
|
|
|
|
for (int32_t i = lane_id; i < num_vec_elems; i += 16) {
|
|
vec_t input_vec;
|
|
input_vec.cast_load(group_input + i * vec_size);
|
|
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < vec_size; ++j) {
|
|
float val = static_cast<float>(input_vec[j]);
|
|
float abs_val = fabsf(val);
|
|
local_absmax = fmaxf(local_absmax, abs_val);
|
|
}
|
|
}
|
|
|
|
local_absmax = GroupReduceMax(local_absmax, lane_id);
|
|
|
|
const float y_s = local_absmax / max_8bit;
|
|
|
|
if (lane_id == 0) {
|
|
*scale_output = y_s;
|
|
}
|
|
|
|
for (int32_t i = lane_id; i < num_vec_elems; i += 16) {
|
|
vec_t input_vec;
|
|
input_vec.cast_load(group_input + i * vec_size);
|
|
|
|
#pragma unroll
|
|
for (uint32_t j = 0; j < vec_size; ++j) {
|
|
float val = static_cast<float>(input_vec[j]);
|
|
float q_val = fminf(fmaxf(val / y_s, min_8bit), max_8bit);
|
|
group_output[i * vec_size + j] = DST_DTYPE(q_val);
|
|
}
|
|
}
|
|
}
|
|
|
|
void sgl_per_token_group_quant_8bit(
|
|
torch::Tensor input,
|
|
torch::Tensor output_q,
|
|
torch::Tensor output_s,
|
|
int64_t group_size,
|
|
double eps,
|
|
double min_8bit,
|
|
double max_8bit) {
|
|
CHECK_INPUT(input);
|
|
CHECK_INPUT(output_q);
|
|
CHECK_INPUT(output_s);
|
|
|
|
const int num_groups = input.numel() / group_size;
|
|
|
|
CHECK_EQ(input.numel() % group_size, 0);
|
|
|
|
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
|
|
|
constexpr int THREADS_PER_GROUP = 16;
|
|
|
|
int groups_per_block = 1;
|
|
|
|
if (num_groups % 16 == 0) {
|
|
groups_per_block = 16;
|
|
} else if (num_groups % 8 == 0) {
|
|
groups_per_block = 8;
|
|
} else if (num_groups % 4 == 0) {
|
|
groups_per_block = 4;
|
|
} else if (num_groups % 2 == 0) {
|
|
groups_per_block = 2;
|
|
}
|
|
|
|
auto dst_type = output_q.scalar_type();
|
|
const int num_blocks = num_groups / groups_per_block;
|
|
const int num_threads = groups_per_block * THREADS_PER_GROUP;
|
|
|
|
#define LAUNCH_KERNEL(T, DST_DTYPE) \
|
|
do { \
|
|
dim3 grid(num_blocks); \
|
|
dim3 block(num_threads); \
|
|
per_token_group_quant_8bit_kernel<T, DST_DTYPE><<<grid, block, 0, stream>>>( \
|
|
static_cast<T*>(input.data_ptr()), \
|
|
output_q.data_ptr(), \
|
|
static_cast<float*>(output_s.data_ptr()), \
|
|
group_size, \
|
|
num_groups, \
|
|
groups_per_block, \
|
|
(float)eps, \
|
|
(float)min_8bit, \
|
|
(float)max_8bit); \
|
|
} while (0)
|
|
|
|
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16(input.scalar_type(), scalar_t, [&] {
|
|
if (dst_type == at::ScalarType::Char) {
|
|
LAUNCH_KERNEL(scalar_t, int8_t);
|
|
return true;
|
|
} else if (dst_type == at::ScalarType::Float8_e4m3fn) {
|
|
LAUNCH_KERNEL(scalar_t, c10::Float8_e4m3fn);
|
|
return true;
|
|
}
|
|
return false;
|
|
});
|
|
|
|
#undef LAUNCH_KERNEL
|
|
}
|
|
|
|
void sgl_per_token_group_quant_int8(
|
|
torch::Tensor input,
|
|
torch::Tensor output_q,
|
|
torch::Tensor output_s,
|
|
int64_t group_size,
|
|
double eps,
|
|
double int8_min,
|
|
double int8_max) {
|
|
sgl_per_token_group_quant_8bit(input, output_q, output_s, group_size, eps, int8_min, int8_max);
|
|
}
|
|
|
|
void sgl_per_token_group_quant_fp8(
|
|
torch::Tensor input,
|
|
torch::Tensor output_q,
|
|
torch::Tensor output_s,
|
|
int64_t group_size,
|
|
double eps,
|
|
double fp8_min,
|
|
double fp8_max) {
|
|
sgl_per_token_group_quant_8bit(input, output_q, output_s, group_size, eps, fp8_min, fp8_max);
|
|
}
|