sglang0.4.5.post1/sgl-kernel/csrc/gemm/per_token_quant_fp8.cu

107 lines
3.1 KiB
Plaintext

#include <ATen/cuda/CUDAContext.h>
#include <cmath>
#include <cub/block/block_reduce.cuh>
#include <flashinfer/vec_dtypes.cuh>
#include "utils.h"
template <typename T>
__global__ void per_token_quant_fp8_kernel(
const T* __restrict__ input,
FP8_TYPE* __restrict__ output_q,
float* __restrict__ output_s,
const int64_t hidden_dim,
const int64_t num_tokens) {
const int token_idx = blockIdx.x;
if (token_idx >= num_tokens) return;
const int tid = threadIdx.x;
const int block_dim = blockDim.x;
const T* token_input = input + token_idx * hidden_dim;
FP8_TYPE* token_output = output_q + token_idx * hidden_dim;
float max_value = 0.0f;
// We want to store 128 bits of data at a time. 16 = 128 / 8 bits
// Load is already vectorized, so 16 elements work for T.
const uint32_t VEC_SIZE = 16;
using vec_t = flashinfer::vec_t<T, VEC_SIZE>;
const int32_t num_vec_elems = hidden_dim / VEC_SIZE;
// Find max using vectorized loads
for (int32_t i = tid; i < num_vec_elems; i += block_dim) {
vec_t input_vec;
input_vec.cast_load(token_input + i * VEC_SIZE);
#pragma unroll
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
float val = static_cast<float>(input_vec[j]);
max_value = fmaxf(max_value, fabsf(val));
}
}
max_value = blockReduceMax(max_value);
__shared__ float scale;
if (tid == 0) {
scale = max_value / FP8_E4M3_MAX;
output_s[token_idx] = scale;
}
__syncthreads();
const float scale_inv = 1.0f / scale;
// Quantize using vectorized loads
for (int32_t i = tid; i < num_vec_elems; i += block_dim) {
vec_t input_vec;
input_vec.cast_load(token_input + i * VEC_SIZE);
FP8_TYPE output_arr[VEC_SIZE];
#pragma unroll
for (uint32_t j = 0; j < VEC_SIZE; ++j) {
float val = fmaxf(fminf(static_cast<float>(input_vec[j]) * scale_inv, FP8_E4M3_MAX), -FP8_E4M3_MAX);
#ifndef USE_ROCM
output_arr[j] = static_cast<FP8_TYPE>(val);
#else
output_arr[j] = c10::Float8_e4m3fnuz(
__hip_cvt_float_to_fp8(val, fp8::fp8_type::__default_saturation, fp8::fp8_type::__default_interpret),
c10::Float8_e4m3fnuz::from_bits());
#endif
}
*(uint4*)(token_output + i * VEC_SIZE) = *(uint4*)output_arr;
}
}
void sgl_per_token_quant_fp8(torch::Tensor input, torch::Tensor output_q, torch::Tensor output_s) {
CHECK_INPUT(input);
CHECK_INPUT(output_q);
CHECK_INPUT(output_s);
const auto input_sizes = input.sizes();
const int64_t num_tokens = input_sizes[0];
const int64_t hidden_dim = input_sizes[1];
TORCH_CHECK(hidden_dim % 16 == 0, "Hidden dimension must be divisible by 16, but got ", hidden_dim);
const int block_size = 256;
const int num_blocks = num_tokens;
dim3 grid(num_blocks);
dim3 block(block_size);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FLOAT_FP16(input.scalar_type(), scalar_t, [&] {
per_token_quant_fp8_kernel<scalar_t><<<grid, block, 0, stream>>>(
static_cast<scalar_t*>(input.data_ptr()),
static_cast<FP8_TYPE*>(output_q.data_ptr()),
static_cast<float*>(output_s.data_ptr()),
hidden_dim,
num_tokens);
return true;
});
}