sglang0.4.5.post1/test/srt/models/lora/utils.py

50 lines
1.5 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import dataclasses
from typing import List
import torch
@dataclasses.dataclass
class LoRAAdaptor:
name: str
prefill_tolerance: float = None
decode_tolerance: float = None
rouge_l_tolerance: float = None
@dataclasses.dataclass
class LoRAModelCase:
base: str
adaptors: List[LoRAAdaptor]
tp_size: int = 1
prefill_tolerance: float = 1e-1
decode_tolerance: float = 1e-1
rouge_l_tolerance: float = 1.0
max_loras_per_batch: int = 1
skip_long_prompt: bool = False
def __post_init__(self):
if len(self.adaptors) > self.max_loras_per_batch:
raise ValueError(
f"For base '{self.base}', number of adaptors ({len(self.adaptors)}) "
f"must be <= max_loras_per_batch ({self.max_loras_per_batch})"
)
TORCH_DTYPES = [torch.float16]
BACKENDS = ["triton"]