sglang0.4.5.post1/test/srt/models/test_gme_qwen_models.py

86 lines
3.3 KiB
Python

# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import multiprocessing as mp
import unittest
import torch
from sglang.test.runners import HFRunner, SRTRunner
from sglang.test.test_utils import CustomTestCase, get_similarities
TEXTS = "two Subway Series sandwiches with meats, cheese, lettuce, tomatoes, and onions on a black background, accompanied by the Subway Series logo, highlighting a new sandwich series."
IMAGES = "https://huggingface.co/datasets/liuhaotian/llava-bench-in-the-wild/resolve/main/images/023.jpg"
MODELS = [
("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct", 1e-3),
]
TORCH_DTYPES = [torch.float16]
class TestQmeQwenModels(CustomTestCase):
@classmethod
def setUpClass(cls):
mp.set_start_method("spawn", force=True)
def assert_close_embeddings(self, model, prefill_tolerance, torch_dtype):
prompts_no_image = f"<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\n{TEXTS}<|im_end|>\n<|im_start|>assistant\n<|endoftext|>"
prompts_with_image = f"<|im_start|>system\nYou are a helpful assistant<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|><|im_end|>\n<|im_start|>assistant\n<|endoftext|>"
with HFRunner(
model,
torch_dtype=torch_dtype,
model_type="embedding",
) as hf_runner:
hf_text_embeddings = hf_runner.forward(prompts=[prompts_no_image])
hf_image_embeddings = hf_runner.forward(
prompts=[prompts_with_image], image_data=[IMAGES]
)
with SRTRunner(
model,
tp_size=1,
torch_dtype=torch_dtype,
model_type="embedding",
) as srt_runner:
srt_text_embeddings = srt_runner.forward(prompts=prompts_no_image)
srt_image_embeddings = srt_runner.forward(
prompts=prompts_with_image, image_data=IMAGES
)
similarity = get_similarities(
hf_text_embeddings.embed_logits[0], srt_text_embeddings.embed_logits[0]
)
print("texts similarity diff", abs(similarity - 1))
assert torch.all(
abs(similarity - 1) < prefill_tolerance
), "embeddings are not all close"
similarity = get_similarities(
hf_image_embeddings.embed_logits[0], srt_image_embeddings.embed_logits[0]
)
print("images similarity diff", abs(similarity - 1))
assert torch.all(
abs(similarity - 1) < prefill_tolerance
), "embeddings are not all close"
def test_accuracy(self):
for model, prefill_tolerance in MODELS:
for torch_dtype in TORCH_DTYPES:
self.assert_close_embeddings(model, prefill_tolerance, torch_dtype)
if __name__ == "__main__":
unittest.main()