160 lines
4.8 KiB
Python
160 lines
4.8 KiB
Python
import unittest
|
|
from types import SimpleNamespace
|
|
|
|
import torch
|
|
|
|
from sglang.srt.utils import kill_process_tree
|
|
from sglang.test.run_eval import run_eval
|
|
from sglang.test.test_utils import (
|
|
DEFAULT_FP8_MODEL_NAME_FOR_ACCURACY_TEST,
|
|
DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
|
|
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST,
|
|
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_REVISION,
|
|
DEFAULT_MODEL_NAME_FOR_TEST,
|
|
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
DEFAULT_URL_FOR_TEST,
|
|
CustomTestCase,
|
|
popen_launch_server,
|
|
)
|
|
|
|
|
|
class TestEvalFP8Accuracy(CustomTestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model = DEFAULT_FP8_MODEL_NAME_FOR_ACCURACY_TEST
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
cls.model, cls.base_url, timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH
|
|
)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
kill_process_tree(cls.process.pid)
|
|
|
|
def test_mmlu(self):
|
|
args = SimpleNamespace(
|
|
base_url=self.base_url,
|
|
model=self.model,
|
|
eval_name="mmlu",
|
|
num_examples=64,
|
|
num_threads=32,
|
|
temperature=0.1,
|
|
)
|
|
|
|
metrics = run_eval(args)
|
|
self.assertGreaterEqual(metrics["score"], 0.61)
|
|
|
|
|
|
class TestEvalFP8DynamicQuantAccuracy(CustomTestCase):
|
|
|
|
def _run_test(self, model, other_args, expected_score):
|
|
base_url = DEFAULT_URL_FOR_TEST
|
|
other_args = other_args or []
|
|
|
|
process = popen_launch_server(
|
|
model,
|
|
base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=other_args,
|
|
)
|
|
|
|
try:
|
|
args = SimpleNamespace(
|
|
base_url=base_url,
|
|
model=model,
|
|
eval_name="mmlu",
|
|
num_examples=64,
|
|
num_threads=32,
|
|
temperature=0.1,
|
|
)
|
|
|
|
metrics = run_eval(args)
|
|
self.assertGreaterEqual(metrics["score"], expected_score)
|
|
finally:
|
|
kill_process_tree(process.pid)
|
|
|
|
def test_mmlu_offline_only(self):
|
|
"""Test with offline quantization only."""
|
|
self._run_test(
|
|
model=DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
|
|
other_args=[],
|
|
expected_score=0.64,
|
|
)
|
|
|
|
def test_mmlu_offline_and_online_override(self):
|
|
"""Test with both offline and online quantization."""
|
|
self._run_test(
|
|
model=DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
|
|
other_args=["--quantization", "w8a8_fp8"],
|
|
# inference will use sgl kernel w/ online quant override
|
|
# we observed that the accuracy is higher then offline only
|
|
expected_score=0.64,
|
|
)
|
|
|
|
def test_mmlu_online_only(self):
|
|
"""Test with online quantization only."""
|
|
self._run_test(
|
|
model=DEFAULT_MODEL_NAME_FOR_TEST,
|
|
# inference will use sgl kernel w/ online quantization only
|
|
# we observed that the accuracy is higher then offline only
|
|
other_args=["--quantization", "w8a8_fp8"],
|
|
expected_score=0.64,
|
|
)
|
|
|
|
def test_mmlu_fp16_baseline(self):
|
|
"""Test with unquantized fp16 baseline."""
|
|
self._run_test(
|
|
model=DEFAULT_MODEL_NAME_FOR_TEST,
|
|
other_args=[],
|
|
expected_score=0.64,
|
|
)
|
|
|
|
|
|
class TestEvalFP8ModelOptQuantAccuracy(CustomTestCase):
|
|
|
|
def _run_test(self, model, other_args, expected_score):
|
|
base_url = DEFAULT_URL_FOR_TEST
|
|
other_args = other_args or []
|
|
|
|
process = popen_launch_server(
|
|
model,
|
|
base_url,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=other_args,
|
|
)
|
|
|
|
try:
|
|
args = SimpleNamespace(
|
|
base_url=base_url,
|
|
model=model,
|
|
eval_name="mmlu",
|
|
num_examples=64,
|
|
num_threads=32,
|
|
temperature=0.1,
|
|
)
|
|
|
|
metrics = run_eval(args)
|
|
self.assertGreaterEqual(metrics["score"], expected_score)
|
|
finally:
|
|
kill_process_tree(process.pid)
|
|
|
|
@unittest.skipIf(
|
|
torch.version.hip is not None, "modelopt quantization unsupported on ROCm"
|
|
)
|
|
def test_mmlu_offline_only(self):
|
|
"""Test with offline quantization only."""
|
|
self._run_test(
|
|
model=DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST,
|
|
other_args=[
|
|
"--quantization",
|
|
"modelopt",
|
|
"--revision",
|
|
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_REVISION,
|
|
],
|
|
expected_score=0.64,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|