sglang0.4.5.post1/test/srt/test_triton_attention_kerne...

391 lines
13 KiB
Python

import random
import unittest
import torch
from sglang.srt.layers.attention.triton_ops.decode_attention import (
decode_attention_fwd,
decode_attention_fwd_grouped,
decode_attention_fwd_normal,
)
from sglang.srt.layers.attention.triton_ops.extend_attention import (
extend_attention_fwd,
redundant_attention,
)
from sglang.srt.layers.attention.triton_ops.prefill_attention import (
context_attention_fwd,
)
from sglang.test.test_utils import CustomTestCase
class TestTritonAttention(CustomTestCase):
def _set_all_seeds(self, seed):
"""Set all random seeds for reproducibility."""
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def setUp(self):
# Set seeds before each test method
self._set_all_seeds(42)
def _test_extend_attention_once(self, B, N_CTX, H_Q, H_KV, D):
dtype = torch.bfloat16
b_seq_len_prefix = torch.randint(
1, N_CTX // 2, (B,), dtype=torch.int32, device="cuda"
)
b_seq_len_extend = torch.randint(
1, N_CTX // 2, (B,), dtype=torch.int32, device="cuda"
)
b_seq_len = b_seq_len_prefix + b_seq_len_extend
max_len_in_batch = torch.max(b_seq_len, 0)[0].item()
b_req_idx = torch.arange(B, dtype=torch.int32, device="cuda")
b_start_loc = torch.zeros((B,), dtype=torch.int32, device="cuda")
b_start_loc[1:] = torch.cumsum(b_seq_len[:-1], 0)
b_start_loc_extend = torch.zeros((B,), dtype=torch.int32, device="cuda")
b_start_loc_extend[1:] = torch.cumsum(b_seq_len_extend[:-1], 0)
kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len_prefix[:B], dim=0)
kv_indices = torch.zeros(
(b_seq_len_prefix.sum().item(),), dtype=torch.int32, device="cuda"
)
for i in range(B):
kv_indices[kv_indptr[i] : kv_indptr[i + 1]] = torch.arange(
b_start_loc[i], b_start_loc[i] + b_seq_len_prefix[i]
)
total_token_num = torch.sum(b_seq_len).item()
extend_token_num = torch.sum(b_seq_len_extend).item()
k_buffer = torch.empty(
(total_token_num, H_KV, D), dtype=dtype, device="cuda"
).normal_(mean=0.1, std=0.2)
v_buffer = torch.empty(
(total_token_num, H_KV, D), dtype=dtype, device="cuda"
).normal_(mean=0.1, std=0.2)
k_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda")
v_extend = torch.empty((extend_token_num, H_KV, D), dtype=dtype, device="cuda")
q_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
for i in range(B):
extend_start_in_buffer = b_start_loc[i] + b_seq_len_prefix[i]
extend_end_in_buffer = b_start_loc[i] + b_seq_len[i]
extend_start = b_start_loc_extend[i]
extend_end = b_start_loc_extend[i] + b_seq_len_extend[i]
k_extend[extend_start:extend_end] = k_buffer[
extend_start_in_buffer:extend_end_in_buffer
]
v_extend[extend_start:extend_end] = v_buffer[
extend_start_in_buffer:extend_end_in_buffer
]
q_extend[extend_start:extend_end] = torch.empty(
(b_seq_len_extend[i], H_Q, D), dtype=dtype, device="cuda"
).normal_(mean=0.1, std=0.2)
o_extend = torch.empty((extend_token_num, H_Q, D), dtype=dtype, device="cuda")
o_extend_mask = torch.empty(
(extend_token_num, H_Q, D), dtype=dtype, device="cuda"
)
o_redundant = torch.empty(
(extend_token_num, H_Q, D), dtype=dtype, device="cuda"
)
b_seq_len_extend = b_seq_len - b_seq_len_prefix
max_len_extend = torch.max(b_seq_len_extend, 0)[0].item()
qo_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
qo_indptr[1 : B + 1] = torch.cumsum(b_seq_len_extend[:B], dim=0)
custom_mask = None
mask_indptr = None
extend_attention_fwd(
q_extend,
k_extend,
v_extend,
o_extend,
k_buffer,
v_buffer,
qo_indptr,
kv_indptr,
kv_indices,
custom_mask,
mask_indptr,
max_len_extend,
)
b_seq_mask_len = b_seq_len_extend * b_seq_len
custom_mask = torch.ones(
(b_seq_mask_len.sum().item(),), dtype=torch.bool, device="cuda"
)
mask_indptr = torch.zeros((B + 1,), dtype=torch.int64, device="cuda")
mask_indptr[1 : B + 1] = torch.cumsum(b_seq_mask_len[:B], dim=0)
for i in range(B):
causal_mask = (
torch.tril(
torch.ones(b_seq_len_extend[i], b_seq_len_extend[i]), diagonal=0
)
== 1
)
prefix_mask = torch.ones(
b_seq_len_extend[i], b_seq_len_prefix[i], dtype=torch.bool
)
mask_flatten = torch.cat([prefix_mask, causal_mask], dim=1).flatten()
custom_mask[mask_indptr[i] : mask_indptr[i + 1]] = mask_flatten
extend_attention_fwd(
q_extend,
k_extend,
v_extend,
o_extend_mask,
k_buffer,
v_buffer,
qo_indptr,
kv_indptr,
kv_indices,
custom_mask,
mask_indptr,
max_len_extend,
)
redundant_attention(
q_extend,
o_redundant,
k_buffer,
v_buffer,
b_req_idx,
b_start_loc,
b_seq_len,
b_seq_len_prefix,
max_len_in_batch,
)
self.assertTrue(torch.allclose(o_extend, o_redundant, rtol=1e-2))
self.assertTrue(torch.allclose(o_extend_mask, o_redundant, rtol=1e-2))
def test_extend_attention(self):
# Define the varying parameter values
attention_values = [128, 96, 80, 13]
# Loop through the values and call the method
for value in attention_values:
self._test_extend_attention_once(19, 12331, 12, 4, value)
def _test_context_attention_once(self, head_dim, is_causal):
# Set up a simple test case
num_heads = 4
seq_lens = [8, 12]
max_seq_len = max(seq_lens)
# Create random input tensors
q = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
k = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
v = torch.randn(sum(seq_lens), num_heads, head_dim, device="cuda")
o = torch.zeros(sum(seq_lens), num_heads, head_dim, device="cuda")
# Create b_start_loc and b_seq_len tensors
b_start_loc = torch.tensor([0, seq_lens[0]], device="cuda")
b_seq_len = torch.tensor(seq_lens, device="cuda")
context_attention_fwd(
q, k, v, o, b_start_loc, b_seq_len, max_seq_len, is_causal=is_causal
)
cu_seq_lens = [0] * (len(seq_lens) + 1)
for i, seq_len in enumerate(seq_lens):
cu_seq_lens[i + 1] = cu_seq_lens[i] + seq_len
for i in range(len(seq_lens)):
start, end = cu_seq_lens[i], cu_seq_lens[i + 1]
o_torch = torch.nn.functional.scaled_dot_product_attention(
q[start:end].permute(1, 0, 2),
k[start:end].permute(1, 0, 2),
v[start:end].permute(1, 0, 2),
is_causal=is_causal,
).permute(1, 0, 2)
cos_sim = torch.nn.functional.cosine_similarity(
o[start:end].flatten(), o_torch.flatten(), dim=0
)
self.assertTrue(cos_sim.item() > 1 - (1e-5))
self.assertTrue(torch.allclose(o[start:end], o_torch, atol=1e-2))
def test_context_attention(self):
head_dim = [128, 96, 80, 13]
for dim in head_dim:
for is_causal in [True, False]:
self._test_context_attention_once(dim, is_causal)
def _test_decode_attention_once(self, B, H_Q, H_KV, D):
dtype = torch.bfloat16
seq_len = 10 # This represents the number of tokens already in the sequence
total_tokens = B * seq_len
sm_scale = 1.0 / (D**0.5)
max_kv_splits = 8
num_kv_splits = torch.full((B,), 4, dtype=torch.int32, device="cuda")
# q represents the new token being generated, one per batch
q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda")
# k_buffer and v_buffer represent all previous tokens
k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")
v_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")
# o will have the same shape as q
o = torch.zeros(B, H_Q, D, dtype=dtype, device="cuda")
b_seq_len = torch.full((B,), seq_len, device="cuda")
kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len[:B], dim=0)
kv_indices = torch.arange(total_tokens, device="cuda")
attn_logits = torch.empty(
(B, H_Q, max_kv_splits, D),
dtype=torch.float32,
device="cuda",
)
attn_lse = torch.empty(
(B, H_Q, max_kv_splits),
dtype=torch.float32,
device="cuda",
)
decode_attention_fwd(
q,
k_buffer,
v_buffer,
o,
kv_indptr,
kv_indices,
attn_logits,
attn_lse,
num_kv_splits,
max_kv_splits,
sm_scale,
)
def test_decode_attention(self):
# Here we just to ensure there is no error
# TODO: correctnesss test
# Test configurations
configs = [
(2, 4, 4, 64), # MHA
(2, 4, 2, 64), # GQA
(2, 4, 4, 80), # Non-standard head dim
(2, 4, 4, 13), # Prime number head dim
]
for B, H_Q, H_KV, D in configs:
self._test_decode_attention_once(B, H_Q, H_KV, D)
def _test_grouped_decode_attention_once(self, B, S, H_Q, H_KV, D, D_V):
dtype = torch.bfloat16
seq_len = S # This represents the number of tokens already in the sequence
total_tokens = B * seq_len
sm_scale = 1.0 / (D**0.5)
max_kv_splits = 8
num_kv_splits = torch.full((B,), 4, dtype=torch.int32, device="cuda")
# q represents the new token being generated, one per batch
q = torch.randn(B, H_Q, D, dtype=dtype, device="cuda")
# k_buffer and v_buffer represent all previous tokens
k_buffer = torch.randn(total_tokens, H_KV, D, dtype=dtype, device="cuda")
v_buffer = torch.randn(total_tokens, H_KV, D_V, dtype=dtype, device="cuda")
# o will have the same shape as q
o = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
o_grouped = torch.zeros(B, H_Q, D_V, dtype=dtype, device="cuda")
b_seq_len = torch.full((B,), seq_len, device="cuda")
kv_indptr = torch.zeros((B + 1,), dtype=torch.int32, device="cuda")
kv_indptr[1 : B + 1] = torch.cumsum(b_seq_len[:B], dim=0)
kv_indices = torch.arange(total_tokens, device="cuda")
attn_logits = torch.empty(
(B, H_Q, max_kv_splits, D_V),
dtype=torch.float32,
device="cuda",
)
attn_lse = torch.empty(
(B, H_Q, max_kv_splits),
dtype=torch.float32,
device="cuda",
)
decode_attention_fwd_normal(
q,
k_buffer,
v_buffer,
o,
kv_indptr,
kv_indices,
attn_logits,
attn_lse,
num_kv_splits,
max_kv_splits,
sm_scale,
)
attn_logits1 = torch.empty(
(B, H_Q, max_kv_splits, D_V),
dtype=torch.float32,
device="cuda",
)
attn_lse1 = torch.empty(
(B, H_Q, max_kv_splits, D_V),
dtype=torch.float32,
device="cuda",
)
decode_attention_fwd_grouped(
q,
k_buffer,
v_buffer,
o_grouped,
kv_indptr,
kv_indices,
attn_logits1,
attn_lse1,
num_kv_splits,
max_kv_splits,
sm_scale,
)
cos_sim = torch.nn.functional.cosine_similarity(
o.flatten(), o_grouped.flatten(), dim=0
)
print(cos_sim.item())
self.assertTrue(cos_sim.item() > 0.99)
self.assertTrue(torch.allclose(o, o_grouped, atol=3e-2))
def test_grouped_decode_attention(self):
seq_lens = [5, 100, 128, 500]
configs = [
(2, 16, 16, 64, 64),
(2, 16, 1, 64, 64),
(2, 64, 1, 13, 13),
(2, 128, 1, 80, 80),
(2, 128, 2, 512, 512),
(2, 128, 1, 576, 512),
]
for S in seq_lens:
for B, H_Q, H_KV, D, D_V in configs:
self._test_grouped_decode_attention_once(B, S, H_Q, H_KV, D, D_V)
if __name__ == "__main__":
unittest.main()