294 lines
12 KiB
Python
294 lines
12 KiB
Python
import json
|
|
import random
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
import sglang as sgl
|
|
from sglang.srt.utils import kill_process_tree
|
|
from sglang.test.test_utils import (
|
|
DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
|
|
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
DEFAULT_URL_FOR_TEST,
|
|
CustomTestCase,
|
|
is_in_ci,
|
|
popen_launch_server,
|
|
)
|
|
|
|
|
|
###############################################################################
|
|
# Engine Mode Tests (Single-configuration)
|
|
###############################################################################
|
|
class TestEngineUpdateWeightsFromDisk(CustomTestCase):
|
|
def setUp(self):
|
|
self.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
|
|
# Initialize the engine in offline (direct) mode.
|
|
self.engine = sgl.Engine(model_path=self.model)
|
|
|
|
def tearDown(self):
|
|
self.engine.shutdown()
|
|
|
|
def run_decode(self):
|
|
prompts = ["The capital of France is"]
|
|
sampling_params = {"temperature": 0, "max_new_tokens": 32}
|
|
outputs = self.engine.generate(prompts, sampling_params)
|
|
print("=" * 100)
|
|
print(
|
|
f"[Engine Mode] Prompt: {prompts[0]}\nGenerated text: {outputs[0]['text']}"
|
|
)
|
|
return outputs[0]["text"]
|
|
|
|
def run_update_weights(self, model_path):
|
|
ret = self.engine.update_weights_from_disk(model_path)
|
|
print(json.dumps(ret))
|
|
return ret
|
|
|
|
def test_update_weights(self):
|
|
origin_response = self.run_decode()
|
|
# Update weights: use new model (remove "-Instruct")
|
|
new_model_path = self.model.replace("-Instruct", "")
|
|
ret = self.run_update_weights(new_model_path)
|
|
self.assertTrue(ret[0]) # ret is a tuple; index 0 holds the success flag
|
|
|
|
updated_response = self.run_decode()
|
|
self.assertNotEqual(origin_response[:32], updated_response[:32])
|
|
|
|
# Revert back to original weights
|
|
ret = self.run_update_weights(self.model)
|
|
self.assertTrue(ret[0])
|
|
reverted_response = self.run_decode()
|
|
self.assertEqual(origin_response[:32], reverted_response[:32])
|
|
|
|
def test_update_weights_unexist_model(self):
|
|
origin_response = self.run_decode()
|
|
new_model_path = self.model.replace("-Instruct", "wrong")
|
|
ret = self.run_update_weights(new_model_path)
|
|
self.assertFalse(ret[0])
|
|
updated_response = self.run_decode()
|
|
self.assertEqual(origin_response[:32], updated_response[:32])
|
|
|
|
|
|
###############################################################################
|
|
# HTTP Server Mode Tests (Single-configuration)
|
|
###############################################################################
|
|
class TestServerUpdateWeightsFromDisk(CustomTestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
cls.model, cls.base_url, timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH
|
|
)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
kill_process_tree(cls.process.pid)
|
|
|
|
def run_decode(self):
|
|
response = requests.post(
|
|
self.base_url + "/generate",
|
|
json={
|
|
"text": "The capital of France is",
|
|
"sampling_params": {"temperature": 0, "max_new_tokens": 32},
|
|
},
|
|
)
|
|
print("=" * 100)
|
|
print(f"[Server Mode] Generated text: {response.json()['text']}")
|
|
return response.json()["text"]
|
|
|
|
def get_model_info(self):
|
|
response = requests.get(self.base_url + "/get_model_info")
|
|
model_path = response.json()["model_path"]
|
|
print(json.dumps(response.json()))
|
|
return model_path
|
|
|
|
def run_update_weights(self, model_path):
|
|
response = requests.post(
|
|
self.base_url + "/update_weights_from_disk",
|
|
json={"model_path": model_path},
|
|
)
|
|
ret = response.json()
|
|
print(json.dumps(ret))
|
|
return ret
|
|
|
|
def test_update_weights(self):
|
|
origin_model_path = self.get_model_info()
|
|
print(f"[Server Mode] origin_model_path: {origin_model_path}")
|
|
origin_response = self.run_decode()
|
|
|
|
new_model_path = DEFAULT_SMALL_MODEL_NAME_FOR_TEST.replace("-Instruct", "")
|
|
ret = self.run_update_weights(new_model_path)
|
|
self.assertTrue(ret["success"])
|
|
|
|
updated_model_path = self.get_model_info()
|
|
print(f"[Server Mode] updated_model_path: {updated_model_path}")
|
|
self.assertEqual(updated_model_path, new_model_path)
|
|
self.assertNotEqual(updated_model_path, origin_model_path)
|
|
|
|
updated_response = self.run_decode()
|
|
self.assertNotEqual(origin_response[:32], updated_response[:32])
|
|
|
|
ret = self.run_update_weights(origin_model_path)
|
|
self.assertTrue(ret["success"])
|
|
updated_model_path = self.get_model_info()
|
|
self.assertEqual(updated_model_path, origin_model_path)
|
|
|
|
updated_response = self.run_decode()
|
|
self.assertEqual(origin_response[:32], updated_response[:32])
|
|
|
|
def test_update_weights_unexist_model(self):
|
|
origin_model_path = self.get_model_info()
|
|
print(f"[Server Mode] origin_model_path: {origin_model_path}")
|
|
origin_response = self.run_decode()
|
|
|
|
new_model_path = DEFAULT_SMALL_MODEL_NAME_FOR_TEST.replace("-Instruct", "wrong")
|
|
ret = self.run_update_weights(new_model_path)
|
|
self.assertFalse(ret["success"])
|
|
|
|
updated_model_path = self.get_model_info()
|
|
print(f"[Server Mode] updated_model_path: {updated_model_path}")
|
|
self.assertEqual(updated_model_path, origin_model_path)
|
|
|
|
updated_response = self.run_decode()
|
|
self.assertEqual(origin_response[:32], updated_response[:32])
|
|
|
|
|
|
###############################################################################
|
|
# Parameterized Tests for update_weights_from_disk
|
|
# Test coverage is determined based on the value of is_in_ci:
|
|
# - In a CI environment: randomly select one mode (Engine or Server) and test only with tp=1, dp=1.
|
|
# - In a non-CI environment: test both Engine and Server modes, and enumerate all combinations
|
|
# with tp and dp ranging from 1 to 2.
|
|
###############################################################################
|
|
class TestUpdateWeightsFromDiskParameterized(CustomTestCase):
|
|
def run_common_test(self, mode, tp, dp):
|
|
"""
|
|
Common test procedure for update_weights_from_disk.
|
|
For Engine mode, we instantiate the engine with tp_size=tp.
|
|
For Server mode, we launch the server with additional arguments for tp (dp is not used in server launch here).
|
|
"""
|
|
if mode == "Engine":
|
|
# Instantiate engine with additional parameter tp_size.
|
|
print(f"[Parameterized Engine] Testing with tp={tp}, dp={dp}")
|
|
engine = sgl.Engine(
|
|
model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
|
|
random_seed=42,
|
|
tp_size=tp,
|
|
# dp parameter is not explicitly used in this API.
|
|
)
|
|
try:
|
|
origin_response = self._engine_update_weights_test(engine)
|
|
finally:
|
|
engine.shutdown()
|
|
elif mode == "Server":
|
|
print(f"[Parameterized Server] Testing with tp={tp}, dp={dp}")
|
|
# Pass additional arguments to launch the server.
|
|
base_args = ["--tp-size", str(tp)]
|
|
process = popen_launch_server(
|
|
DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
|
|
DEFAULT_URL_FOR_TEST,
|
|
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
|
|
other_args=base_args,
|
|
)
|
|
try:
|
|
origin_response = self._server_update_weights_test(DEFAULT_URL_FOR_TEST)
|
|
finally:
|
|
kill_process_tree(process.pid)
|
|
else:
|
|
raise ValueError(f"Unknown mode: {mode}")
|
|
|
|
def _engine_update_weights_test(self, engine):
|
|
# Run the update weights test on the given engine instance.
|
|
def run_decode():
|
|
prompts = ["The capital of France is"]
|
|
sampling_params = {"temperature": 0, "max_new_tokens": 32}
|
|
outputs = engine.generate(prompts, sampling_params)
|
|
print("=" * 100)
|
|
print(
|
|
f"[Parameterized Engine] Prompt: {prompts[0]}\nGenerated text: {outputs[0]['text']}"
|
|
)
|
|
return outputs[0]["text"]
|
|
|
|
def run_update_weights(model_path):
|
|
ret = engine.update_weights_from_disk(model_path)
|
|
print(json.dumps(ret))
|
|
return ret
|
|
|
|
origin_response = run_decode()
|
|
new_model_path = DEFAULT_SMALL_MODEL_NAME_FOR_TEST.replace("-Instruct", "")
|
|
ret = run_update_weights(new_model_path)
|
|
self.assertTrue(ret[0])
|
|
updated_response = run_decode()
|
|
self.assertNotEqual(origin_response[:32], updated_response[:32])
|
|
ret = run_update_weights(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
|
|
self.assertTrue(ret[0])
|
|
reverted_response = run_decode()
|
|
self.assertEqual(origin_response[:32], reverted_response[:32])
|
|
return origin_response
|
|
|
|
def _server_update_weights_test(self, base_url):
|
|
def run_decode():
|
|
response = requests.post(
|
|
base_url + "/generate",
|
|
json={
|
|
"text": "The capital of France is",
|
|
"sampling_params": {"temperature": 0, "max_new_tokens": 32},
|
|
},
|
|
)
|
|
print("=" * 100)
|
|
print(f"[Parameterized Server] Generated text: {response.json()['text']}")
|
|
return response.json()["text"]
|
|
|
|
def get_model_info():
|
|
response = requests.get(base_url + "/get_model_info")
|
|
model_path = response.json()["model_path"]
|
|
print(json.dumps(response.json()))
|
|
return model_path
|
|
|
|
def run_update_weights(model_path):
|
|
response = requests.post(
|
|
base_url + "/update_weights_from_disk",
|
|
json={"model_path": model_path},
|
|
)
|
|
ret = response.json()
|
|
print(json.dumps(ret))
|
|
return ret
|
|
|
|
origin_model_path = get_model_info()
|
|
origin_response = run_decode()
|
|
new_model_path = DEFAULT_SMALL_MODEL_NAME_FOR_TEST.replace("-Instruct", "")
|
|
ret = run_update_weights(new_model_path)
|
|
self.assertTrue(ret["success"])
|
|
updated_model_path = get_model_info()
|
|
self.assertEqual(updated_model_path, new_model_path)
|
|
self.assertNotEqual(updated_model_path, origin_model_path)
|
|
updated_response = run_decode()
|
|
self.assertNotEqual(origin_response[:32], updated_response[:32])
|
|
ret = run_update_weights(origin_model_path)
|
|
self.assertTrue(ret["success"])
|
|
updated_model_path = get_model_info()
|
|
self.assertEqual(updated_model_path, origin_model_path)
|
|
reverted_response = run_decode()
|
|
self.assertEqual(origin_response[:32], reverted_response[:32])
|
|
return origin_response
|
|
|
|
def test_parameterized_update_weights(self):
|
|
if is_in_ci():
|
|
# In CI, choose one random mode (Engine or Server) with tp=1, dp=1.
|
|
mode = random.choice(["Engine", "Server"])
|
|
test_suits = [(1, 1, mode)]
|
|
else:
|
|
# Otherwise, test both modes and enumerate tp,dp combinations from 1 to 2.
|
|
test_suits = []
|
|
for mode in ["Engine", "Server"]:
|
|
for tp in [1, 2]:
|
|
for dp in [1, 2]:
|
|
test_suits.append((tp, dp, mode))
|
|
for tp, dp, mode in test_suits:
|
|
with self.subTest(mode=mode, tp=tp, dp=dp):
|
|
self.run_common_test(mode, tp, dp)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|