sglang0.4.5.post1/benchmark/bench_in_batch_prefix/bench_in_batch_prefix.py

131 lines
3.9 KiB
Python

# Benchmark with lots of common prefixes. Used to benchmark prefix caching performance.
#
# Launch a server:
# python -m sglang.launch_server --model-path meta-llama/Llama-2-7b-chat-hf --port 30000 --log-level-http warning
import random
import string
import time
from tqdm import tqdm
from transformers import AutoTokenizer
import sglang as sgl
from sglang import set_default_backend
from sglang.lang.backend.runtime_endpoint import RuntimeEndpoint
def generate_random_string(token_length: int) -> str:
random_string = "".join(
random.choices(string.ascii_letters + string.digits, k=token_length * 100)
)
tokenized_output = tokenizer.encode(random_string, add_special_tokens=False)[
:token_length
]
if len(tokenized_output) < token_length:
tokenized_output = tokenized_output + [tokenizer.pad_token_id] * (
token_length - len(tokenized_output)
)
decoded_string = tokenizer.decode(tokenized_output, skip_special_tokens=False)
return decoded_string
def generate_unique_prefix(base_text, index):
return str(index) + base_text[len(str(index)) :]
@sgl.function
def text_qa(s, question, gen_len):
s += "Q: " + question + "\n"
s += "A:" + sgl.gen("answer", stop="\n", temperature=0, max_tokens=gen_len)
def prepare_prompts(num_prefix, num_samples_per_prefix, prefix_length, suffix_length):
base_prefix = generate_random_string(prefix_length)
tot_input_len = 0
all_prompts = []
for i in tqdm(range(num_prefix), desc="prepare prompts"):
unique_prefix = generate_unique_prefix(base_prefix, i)
prompt_list = []
for j in range(num_samples_per_prefix):
suffix = generate_random_string(suffix_length)
prompt = unique_prefix + suffix
prompt_list.append(prompt)
tot_input_len += len(tokenizer.encode(prompt))
all_prompts.append(prompt_list)
return all_prompts, tot_input_len
def test_batch_by_batch(all_prompts, gen_len):
backend.flush_cache()
tot_time = 0
for i in range(len(all_prompts)):
tic = time.time()
text_qa.run_batch(
list(zip(all_prompts[i], [gen_len] * len(all_prompts[i]))),
)
tot_time += time.time() - tic
return tot_time
def test_batch_by_batch_with_hint(all_prompts, gen_len):
backend.flush_cache()
tot_time = 0
for i in range(len(all_prompts)):
tic = time.time()
# Send a hint to cache the prefix
text_qa.run_batch(list(zip(all_prompts[i][:1], [gen_len])))
# Send the batch
text_qa.run_batch(list(zip(all_prompts[i], [gen_len] * len(all_prompts[i]))))
tot_time += time.time() - tic
return tot_time
def test_send_all(all_prompts, gen_len):
backend.flush_cache()
all_prompts = [x for prompt_list in all_prompts for x in prompt_list]
tic = time.time()
text_qa.run_batch(
list(zip(all_prompts, [gen_len] * len(all_prompts))),
)
tot_time = time.time() - tic
return tot_time
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/llama-tokenizer")
backend = RuntimeEndpoint("http://127.0.0.1:30000")
set_default_backend(backend)
random.seed(0)
num_prefix = 10
num_samples_per_prefix = 32
prefix_length = 1024
suffix_length = 128
gen_len = 1
all_prompts, tot_input_len = prepare_prompts(
num_prefix, num_samples_per_prefix, prefix_length, suffix_length
)
print(f"Total input token length: {tot_input_len}\n")
cost = test_batch_by_batch(all_prompts, gen_len)
print(f"Latency of test_batch_by_batch : {cost:.4f} s\n")
cost = test_batch_by_batch_with_hint(all_prompts, gen_len)
print(f"Latency of test_batch_by_batch_with_hint: {cost:.4f} s\n")
cost = test_send_all(all_prompts, gen_len)
print(f"Latency of test_send_all : {cost:.4f} s\n")