sglang0.4.5.post1/benchmark/kernels/fused_moe_triton/tuning_fused_moe_triton.py

565 lines
18 KiB
Python

# Adapted from https://github.com/vllm-project/vllm/blob/main/benchmarks/kernels/benchmark_moe.py
import argparse
import json
import time
from datetime import datetime
from typing import Any, Dict, List, Tuple, TypedDict
import ray
import torch
import triton
from ray.experimental.tqdm_ray import tqdm
from transformers import AutoConfig
from sglang.srt.layers.moe.fused_moe_triton.fused_moe import (
fused_moe,
get_config_dtype_str,
get_config_file_name,
get_default_config,
get_moe_configs,
)
from sglang.srt.utils import is_hip
_is_hip_ = is_hip()
class BenchmarkConfig(TypedDict):
BLOCK_SIZE_M: int
BLOCK_SIZE_N: int
BLOCK_SIZE_K: int
GROUP_SIZE_M: int
num_warps: int
num_stages: int
def benchmark_config(
config: BenchmarkConfig,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a8: bool,
use_int8_w8a16: bool,
block_shape: List[int] = None,
num_iters: int = 100,
) -> float:
init_dtype = torch.float16 if use_fp8_w8a8 else dtype
x = torch.randn(num_tokens, hidden_size, dtype=dtype)
if use_int8_w8a16 or use_int8_w8a8:
w1 = torch.randint(
-127,
127,
(
num_experts,
shard_intermediate_size,
hidden_size,
),
dtype=torch.int8,
)
w2 = torch.randint(
-127,
127,
(
num_experts,
hidden_size,
shard_intermediate_size // 2,
),
dtype=torch.int8,
)
else:
w1 = torch.randn(
num_experts, shard_intermediate_size, hidden_size, dtype=init_dtype
)
w2 = torch.randn(
num_experts, hidden_size, shard_intermediate_size // 2, dtype=init_dtype
)
gating_output = torch.randn(num_iters, num_tokens, num_experts, dtype=torch.float32)
w1_scale = None
w2_scale = None
a1_scale = None
a2_scale = None
if use_int8_w8a16:
w1_scale = torch.randn(
(num_experts, 2 * shard_intermediate_size), dtype=torch.float32
)
w2_scale = torch.randn((hidden_size, num_experts), dtype=torch.float32)
if use_fp8_w8a8 or use_int8_w8a8:
if use_int8_w8a8 and block_shape is None:
w1_scale = torch.randn(
num_experts, shard_intermediate_size, dtype=torch.float32
)
w2_scale = torch.randn(num_experts, hidden_size, dtype=torch.float32)
elif block_shape is None:
w1_scale = torch.randn(num_experts, dtype=torch.float32)
w2_scale = torch.randn(num_experts, dtype=torch.float32)
a1_scale = torch.randn(1, dtype=torch.float32)
a2_scale = torch.randn(1, dtype=torch.float32)
else:
block_n, block_k = block_shape[0], block_shape[1]
n_tiles_w1 = (shard_intermediate_size + block_n - 1) // block_n
n_tiles_w2 = (hidden_size + block_n - 1) // block_n
k_tiles_w1 = (hidden_size + block_k - 1) // block_k
k_tiles_w2 = (shard_intermediate_size // 2 + block_k - 1) // block_k
w1_scale = torch.rand(
(num_experts, n_tiles_w1, k_tiles_w1), dtype=torch.float32
)
w2_scale = torch.rand(
(num_experts, n_tiles_w2, k_tiles_w2), dtype=torch.float32
)
if use_fp8_w8a8:
w1 = w1.to(torch.float8_e4m3fnuz if _is_hip_ else torch.float8_e4m3fn)
w2 = w2.to(torch.float8_e4m3fnuz if _is_hip_ else torch.float8_e4m3fn)
input_gating = torch.empty(num_tokens, num_experts, dtype=torch.float32)
def prepare(i: int):
input_gating.copy_(gating_output[i])
def run():
from sglang.srt.layers.moe.fused_moe_triton import override_config
with override_config(config):
fused_moe(
x,
w1,
w2,
input_gating,
topk,
renormalize=True,
inplace=True,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
use_int8_w8a16=use_int8_w8a16,
w1_scale=w1_scale,
w2_scale=w2_scale,
a1_scale=a1_scale,
a2_scale=a2_scale,
block_shape=block_shape,
)
# JIT compilation & warmup
run()
torch.cuda.synchronize()
# Capture 10 invocations with CUDA graph
graph = torch.cuda.CUDAGraph()
with torch.cuda.graph(graph):
for _ in range(10):
run()
torch.cuda.synchronize()
# Warmup
for _ in range(5):
graph.replay()
torch.cuda.synchronize()
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
latencies: List[float] = []
for i in range(num_iters):
prepare(i)
torch.cuda.synchronize()
start_event.record()
graph.replay()
end_event.record()
end_event.synchronize()
latencies.append(start_event.elapsed_time(end_event))
avg = sum(latencies) / (num_iters * 10) * 1000 # us
graph.reset()
return avg
def get_rocm_configs_compute_bound() -> List[Dict[str, int]]:
configs: List[BenchmarkConfig] = []
waves_per_eu_range = 0
for num_stages in [2]:
for block_m in [32, 64, 128, 256]:
for block_k in [32, 64, 128, 256]:
for block_n in [16, 32, 64, 128, 256]:
for num_warps in [1, 2, 4, 8]:
for group_size in [1, 4, 8, 16, 32]:
configs.append(
{
"BLOCK_SIZE_M": block_m,
"BLOCK_SIZE_N": block_n,
"BLOCK_SIZE_K": block_k,
"GROUP_SIZE_M": group_size,
"num_warps": num_warps,
"num_stages": num_stages,
"waves_per_eu": waves_per_eu_range,
}
)
return configs
def get_configs_compute_bound() -> List[Dict[str, int]]:
# Reduced search space for faster tuning.
# TODO(woosuk): Increase the search space and use a performance model to
# prune the search space.
configs: List[BenchmarkConfig] = []
if _is_hip_:
configs = get_rocm_configs_compute_bound()
else:
for num_stages in [2, 3, 4, 5]:
for block_m in [16, 32, 64, 128, 256]:
for block_k in [64, 128, 256]:
for block_n in [32, 64, 128, 256]:
for num_warps in [4, 8]:
for group_size in [1, 16, 32, 64]:
configs.append(
{
"BLOCK_SIZE_M": block_m,
"BLOCK_SIZE_N": block_n,
"BLOCK_SIZE_K": block_k,
"GROUP_SIZE_M": group_size,
"num_warps": num_warps,
"num_stages": num_stages,
}
)
return configs
@ray.remote(num_gpus=1)
class BenchmarkWorker:
def __init__(self, seed: int) -> None:
torch.set_default_device("cuda")
torch.cuda.manual_seed_all(0)
self.seed = seed
def benchmark(
self,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a8: bool,
use_int8_w8a16: bool,
block_shape: List[int],
) -> Tuple[Dict[str, int], float]:
torch.cuda.manual_seed_all(0)
dtype_str = get_config_dtype_str(
dtype, use_int8_w8a16=use_int8_w8a16, use_fp8_w8a8=use_fp8_w8a8
)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
block_n = block_shape[0] if block_shape else 0
block_k = block_shape[1] if block_shape else 0
op_config = get_moe_configs(
num_experts, shard_intermediate_size // 2, dtype_str, block_n, block_k
)
if op_config is None:
config = get_default_config(
num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype_str,
False,
block_shape,
)
else:
config = op_config[min(op_config.keys(), key=lambda x: abs(x - num_tokens))]
kernel_time = benchmark_config(
config,
num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a8,
use_int8_w8a16,
block_shape,
)
return config, kernel_time
def tune(
self,
num_tokens: int,
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a8: bool,
use_int8_w8a16: bool,
block_shape: List[int],
search_space: List[Dict[str, int]],
) -> Dict[str, int]:
best_config = None
best_time = float("inf")
for config in tqdm(search_space):
try:
kernel_time = benchmark_config(
config,
num_tokens,
num_experts,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a8,
use_int8_w8a16,
block_shape,
num_iters=10,
)
except triton.runtime.autotuner.OutOfResources:
# Some configurations may be invalid and fail to compile.
continue
if kernel_time < best_time:
best_time = kernel_time
best_config = config
now = datetime.now()
print(f"{now.ctime()}] Completed tuning for batch_size={num_tokens}")
assert best_config is not None
return best_config
def sort_config(config: BenchmarkConfig) -> BenchmarkConfig:
return {
"BLOCK_SIZE_M": config["BLOCK_SIZE_M"],
"BLOCK_SIZE_N": config["BLOCK_SIZE_N"],
"BLOCK_SIZE_K": config["BLOCK_SIZE_K"],
"GROUP_SIZE_M": config["GROUP_SIZE_M"],
"num_warps": config["num_warps"],
"num_stages": config["num_stages"],
**(
{"waves_per_eu": config["waves_per_eu"]} if "waves_per_eu" in config else {}
),
}
def save_configs(
configs: Dict[int, BenchmarkConfig],
num_experts: int,
shard_intermediate_size: int,
hidden_size: int,
topk: int,
dtype: torch.dtype,
use_fp8_w8a8: bool,
use_int8_w8a8: bool,
use_int8_w8a16: bool,
block_shape: List[int],
) -> None:
dtype_str = get_config_dtype_str(
dtype,
use_int8_w8a16=use_int8_w8a16,
use_fp8_w8a8=use_fp8_w8a8,
use_int8_w8a8=use_int8_w8a8,
)
# NOTE(woosuk): The current naming convention uses w2.shape[2], which
# is the intermediate size after silu_and_mul.
filename = get_config_file_name(
num_experts,
shard_intermediate_size // 2,
dtype_str,
block_shape,
)
print(f"Writing best config to {filename}...")
with open(filename, "w") as f:
json.dump(configs, f, indent=4)
f.write("\n")
def main(args: argparse.Namespace):
print(args)
config = AutoConfig.from_pretrained(args.model, trust_remote_code=True)
if config.architectures[0] == "DbrxForCausalLM":
E = config.ffn_config.moe_num_experts
topk = config.ffn_config.moe_top_k
intermediate_size = config.ffn_config.ffn_hidden_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] == "JambaForCausalLM":
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] == "Qwen2MoeForCausalLM":
E = config.num_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] in ["DeepseekV2ForCausalLM", "DeepseekV3ForCausalLM"]:
E = config.n_routed_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
elif config.architectures[0] in [
"Grok1ForCausalLM",
"Grok1ImgGen",
"Grok1AForCausalLM",
]:
E = config.num_local_experts
topk = config.num_experts_per_tok
intermediate_size = config.moe_intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
else:
# Default: Mixtral
E = config.num_local_experts
topk = config.num_experts_per_tok
intermediate_size = config.intermediate_size
shard_intermediate_size = 2 * intermediate_size // args.tp_size
hidden_size = config.hidden_size
dtype = config.torch_dtype
use_fp8_w8a8 = args.dtype == "fp8_w8a8"
use_int8_w8a8 = args.dtype == "int8_w8a8"
use_int8_w8a16 = args.dtype == "int8_w8a16"
block_shape = None
if (
hasattr(config, "quantization_config")
and "weight_block_size" in config.quantization_config
):
block_shape = config.quantization_config["weight_block_size"]
assert len(block_shape) == 2
if args.batch_size is None:
batch_sizes = [
1,
2,
4,
8,
16,
24,
32,
48,
64,
96,
128,
256,
512,
1024,
1536,
2048,
3072,
4096,
]
else:
batch_sizes = [args.batch_size]
ray.init()
num_gpus = int(ray.available_resources()["GPU"])
workers = [BenchmarkWorker.remote(args.seed) for _ in range(num_gpus)]
def _distribute(method: str, inputs: List[Any]) -> List[Any]:
outputs = []
worker_idx = 0
for input_args in inputs:
worker = workers[worker_idx]
worker_method = getattr(worker, method)
output = worker_method.remote(*input_args)
outputs.append(output)
worker_idx = (worker_idx + 1) % num_gpus
return ray.get(outputs)
if args.tune:
search_space = get_configs_compute_bound()
if block_shape is not None:
block_n, block_k = block_shape[0], block_shape[1]
search_space = [
config
for config in search_space
if block_k % config["BLOCK_SIZE_K"] == 0
]
print(f"Start tuning over {len(search_space)} configurations...")
start = time.time()
configs = _distribute(
"tune",
[
(
batch_size,
E,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a8,
use_int8_w8a16,
block_shape,
search_space,
)
for batch_size in batch_sizes
],
)
best_configs = {
M: sort_config(config) for M, config in zip(batch_sizes, configs)
}
save_configs(
best_configs,
E,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a8,
use_int8_w8a16,
block_shape,
)
end = time.time()
print(f"Tuning took {end - start:.2f} seconds")
else:
outputs = _distribute(
"benchmark",
[
(
batch_size,
E,
shard_intermediate_size,
hidden_size,
topk,
dtype,
use_fp8_w8a8,
use_int8_w8a8,
use_int8_w8a16,
block_shape,
)
for batch_size in batch_sizes
],
)
for batch_size, (config, kernel_time) in zip(batch_sizes, outputs):
print(f"Batch size: {batch_size}, config: {config}")
print(f"Kernel time: {kernel_time:.2f} us")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", type=str, default="mistralai/Mixtral-8x7B-Instruct-v0.1"
)
parser.add_argument("--tp-size", "-tp", type=int, default=2)
parser.add_argument(
"--dtype",
type=str,
choices=["auto", "fp8_w8a8", "int8_w8a16", "int8_w8a8"],
default="auto",
)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--batch-size", type=int, required=False)
parser.add_argument("--tune", action="store_true")
args = parser.parse_args()
main(args)