172 lines
5.1 KiB
Python
172 lines
5.1 KiB
Python
import argparse
|
|
import ast
|
|
import json
|
|
import re
|
|
import time
|
|
from collections import Counter
|
|
|
|
import numpy as np
|
|
|
|
import sglang as sgl
|
|
from sglang.test.test_utils import (
|
|
add_common_sglang_args_and_parse,
|
|
select_sglang_backend,
|
|
)
|
|
from sglang.utils import dump_state_text, read_jsonl
|
|
|
|
INVALID = -9999999
|
|
|
|
|
|
def get_answer_value(answer_str):
|
|
answer_str = answer_str.replace(",", "")
|
|
numbers = re.findall(r"\d+", answer_str)
|
|
if len(numbers) < 1:
|
|
return INVALID
|
|
try:
|
|
return ast.literal_eval(numbers[-1])
|
|
except SyntaxError:
|
|
return INVALID
|
|
|
|
|
|
def most_frequent_number(numbers):
|
|
if not numbers:
|
|
return None
|
|
|
|
frequency = Counter(numbers)
|
|
most_frequent = max(frequency, key=frequency.get)
|
|
return most_frequent
|
|
|
|
|
|
# Use a low temp to make the results more deterministic and the comparison more fair.
|
|
temp = 0.001
|
|
|
|
|
|
def propose_plan(s, question, num_branches):
|
|
s += sgl.user(
|
|
"""Please generate a high-level plan for solving the following question. As the first step, just say what method and idea you will use to solve the question. You can reorganize the information in the question. Do not do the actual calculation. Keep your response concise and within 80 words. Question: """
|
|
+ question
|
|
)
|
|
forks = s.fork(num_branches)
|
|
forks += sgl.assistant(sgl.gen("plan", max_tokens=256, temperature=temp))
|
|
return forks
|
|
|
|
|
|
def execute_plan(s, num_branches):
|
|
s += sgl.user(
|
|
"""The plan looks good! Now, use real numbers and do the calculation. Please solve the question step-by-step according to the high-level plan. Give me the final answer. Make your response short."""
|
|
)
|
|
forks = s.fork(num_branches)
|
|
forks += sgl.assistant(sgl.gen("answer", max_tokens=256, temperature=temp))
|
|
return forks
|
|
|
|
|
|
def reflect_solution(s, num_branches):
|
|
s += sgl.user(
|
|
"""Okay. Now, evaluate your own solution and give it a score on a scale of 1 to 5. Please do rigorous check of the correctness."""
|
|
)
|
|
forks = s.fork(num_branches)
|
|
forks += sgl.assistant(sgl.gen("score", max_tokens=256, temperature=temp))
|
|
return forks
|
|
|
|
|
|
def get_final_answer(s, num_branches):
|
|
s += sgl.user(
|
|
"""Based on your reflection, do you change your mind? Now, give me the final answer after careful consideration."""
|
|
)
|
|
forks = s.fork(num_branches)
|
|
forks += sgl.assistant(sgl.gen("final_answer", max_tokens=256, temperature=temp))
|
|
return forks
|
|
|
|
|
|
@sgl.function
|
|
def tree_search(s, question, num_branches):
|
|
plan_forks = propose_plan(s, question, num_branches)
|
|
|
|
sol_states = []
|
|
for plan in plan_forks:
|
|
forks = execute_plan(plan, num_branches)
|
|
sol_states.extend(forks)
|
|
|
|
ref_states = []
|
|
for sol in sol_states:
|
|
forks = reflect_solution(sol, num_branches)
|
|
ref_states.extend(forks)
|
|
|
|
solutions = []
|
|
for sol in ref_states:
|
|
forks = get_final_answer(sol, num_branches)
|
|
solutions.append(forks)
|
|
solutions = [[s.text() for s in forks] for forks in solutions]
|
|
|
|
return solutions
|
|
|
|
|
|
def main(args):
|
|
lines = read_jsonl(args.data_path)
|
|
lines = list(lines)
|
|
|
|
# Construct prompts
|
|
num_branches = 2
|
|
questions = []
|
|
labels = []
|
|
for i in range(len(lines[: args.num_questions])):
|
|
questions.append(lines[i]["question"])
|
|
labels.append(get_answer_value(lines[i]["answer"]))
|
|
assert all(l != INVALID for l in labels)
|
|
arguments = [{"question": q, "num_branches": num_branches} for q in questions]
|
|
|
|
# Select backend
|
|
backend = select_sglang_backend(args)
|
|
|
|
# Run requests
|
|
tic = time.time()
|
|
states = tree_search.run_batch(
|
|
arguments,
|
|
temperature=0,
|
|
backend=backend,
|
|
num_threads=args.parallel,
|
|
progress_bar=True,
|
|
)
|
|
latency = time.time() - tic
|
|
answers_text = []
|
|
for s in states:
|
|
answers_text.append([x for xs in s.ret_value for x in xs])
|
|
|
|
preds = []
|
|
for i in range(len(states)):
|
|
answers = [get_answer_value(v) for v in answers_text[i]]
|
|
preds.append(most_frequent_number(answers))
|
|
|
|
# Compute accuracy
|
|
acc = np.mean(np.array(preds) == np.array(labels))
|
|
invalid = np.mean(np.array(preds) == INVALID)
|
|
print(f"Latency: {latency:.3f}")
|
|
print(f"Invalid: {invalid:.3f}")
|
|
print(f"Accuracy: {acc:.3f}")
|
|
|
|
# Write results
|
|
dump_state_text(f"tmp_output_{args.backend}.txt", answers_text)
|
|
|
|
with open(args.result_file, "a") as fout:
|
|
value = {
|
|
"task": "tree_of_thought_gsm8k",
|
|
"backend": args.backend,
|
|
"num_gpus": 1,
|
|
"latency": round(latency, 3),
|
|
"accuracy": round(acc, 3),
|
|
"num_requests": args.num_questions,
|
|
"other": {
|
|
"num_questions": args.num_questions,
|
|
"parallel": args.parallel,
|
|
},
|
|
}
|
|
fout.write(json.dumps(value) + "\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--data-path", type=str, default="test.jsonl")
|
|
parser.add_argument("--num-questions", type=int, default=200)
|
|
args = add_common_sglang_args_and_parse(parser)
|
|
main(args)
|