sglang0.4.5.post1/examples/frontend_language/usage/cot_decoding.py

116 lines
3.8 KiB
Python

from math import exp
from pprint import pformat
import sglang as sgl
YELLOW = "\033[1;33m"
GREEN = "\033[1;32m"
BLUE = "\033[1;34m"
CLEAR = "\033[1;0m"
@sgl.function
def cot_decoding(s, question, get_top_k, is_chat_model, verbose):
"""CoT Decoding: http://arxiv.org/abs/2402.10200"""
if is_chat_model:
s += sgl.user("Question: " + question + "\nAnswer:")
s += sgl.assistant_begin()
else:
s += "Question: " + question + "\nAnswer:"
step_0 = s.fork(1)[0]
forks = s.fork(get_top_k)
answer_forks = s.fork(get_top_k)
# decoding step 0
step_0 += sgl.gen(
"get_top_k",
max_tokens=0,
return_logprob=True,
top_logprobs_num=get_top_k,
return_text_in_logprobs=True,
)
logprobs = step_0.get_meta_info("get_top_k")["output_top_logprobs"][0]
print("Decoding step 0:", ", ".join(pformat(token[2]) for token in logprobs))
for idx, (f, token) in enumerate(zip(forks, logprobs)):
logprob, token_id, text = token
f += text
if text == "<|end_of_text|>":
print(
f"{YELLOW}Path #{idx} {pformat(text)}[{exp(logprob):.3f}] (score=nan, answer=nan){CLEAR}"
)
continue
# continue greedy decoding
f += sgl.gen(
"answer",
temperature=0,
max_tokens=1024,
return_logprob=True,
top_logprobs_num=2,
return_text_in_logprobs=True,
)
# calculate probability disparity between the top and secondary tokens
x1s = [exp(xt[0][0]) for xt in f.get_meta_info("answer")["output_top_logprobs"]]
x2s = [exp(xt[1][0]) for xt in f.get_meta_info("answer")["output_top_logprobs"]]
tokens = [xt[0][2] for xt in f.get_meta_info("answer")["output_top_logprobs"]]
delta = (sum(x1s) - sum(x2s)) / len(x1s)
# extract the answer span (without the '<|end_of_text|>' token)
answer_forks[idx] += text + f["answer"] + "\nSo the answer is"
answer_forks[idx] += sgl.gen(
"answer_span",
temperature=0,
max_tokens=64,
return_logprob=True,
top_logprobs_num=2,
return_text_in_logprobs=True,
)
answer = answer_forks[idx]["answer_span"].replace("\n", " ").strip(":")
print(
f"{YELLOW}Path #{idx} {pformat(text)}[{exp(logprob):.3f}] (score={delta}, answer={answer}){CLEAR}"
)
generated_text = str(answer_forks[idx])[len("ProgramState(") : -1]
print(f"{BLUE}{pformat(generated_text)}{CLEAR}")
if verbose:
answer_tokens = [
xt[0][2]
for xt in answer_forks[idx].get_meta_info("answer_span")[
"output_top_logprobs"
]
]
answer_x1s = [
exp(xt[0][0])
for xt in answer_forks[idx].get_meta_info("answer_span")[
"output_top_logprobs"
]
]
answer_x2s = [
exp(xt[1][0])
for xt in answer_forks[idx].get_meta_info("answer_span")[
"output_top_logprobs"
]
]
for token, x1, x2 in zip(tokens, x1s, x2s):
print(f" {GREEN}{pformat(token)}{CLEAR}({x1:.3f}-{x2:.3f})", end="")
print("\n===========")
for token, x1, x2 in zip(answer_tokens, answer_x1s, answer_x2s):
print(f" {GREEN}{pformat(token)}{CLEAR}({x1:.3f}-{x2:.3f})", end="")
print()
sgl.set_default_backend(sgl.RuntimeEndpoint("http://localhost:30000"))
state = cot_decoding.run(
question=r"Claire makes a 3 egg omelet every morning for breakfast. How many dozens of eggs will she eat in 4 weeks?",
get_top_k=10,
is_chat_model=True,
verbose=False,
)