sglang0.4.5.post1/examples/runtime/reward_model.py

33 lines
830 B
Python

# launch server
# python -m sglang.launch_server --model LxzGordon/URM-LLaMa-3.1-8B --is-embedding
import requests
url = "http://127.0.0.1:30000"
PROMPT = (
"What is the range of the numeric output of a sigmoid node in a neural network?"
)
RESPONSE1 = "The output of a sigmoid node is bounded between -1 and 1."
RESPONSE2 = "The output of a sigmoid node is bounded between 0 and 1."
json_data = {
"conv": [
[
{"role": "user", "content": PROMPT},
{"role": "assistant", "content": RESPONSE1},
],
[
{"role": "user", "content": PROMPT},
{"role": "assistant", "content": RESPONSE2},
],
],
}
response = requests.post(
url + "/classify",
json=json_data,
).json()
print(response)
print("scores:", [x["embedding"] for x in response])