sglang0.4.5.post1/python/sglang/srt/layers/quantization/fp8_kernel.py

818 lines
24 KiB
Python

# Copyright 2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import functools
import json
import logging
import os
from typing import Any, Dict, List, Optional, Tuple
import torch
import triton
import triton.language as tl
from sglang.srt.utils import (
direct_register_custom_op,
get_bool_env_var,
get_device_core_count,
get_device_name,
get_device_sm,
is_cuda,
is_hip,
supports_custom_op,
)
_enable_jit_deepgemm = False
_is_hip = is_hip()
fp8_type_ = torch.float8_e4m3fnuz if _is_hip else torch.float8_e4m3fn
_is_cuda = is_cuda()
if _is_cuda:
import deep_gemm # `pip install "sgl-kernel>=0.0.4.post3"`
from sgl_kernel import sgl_per_token_group_quant_fp8, sgl_per_token_quant_fp8
sm_version = get_device_sm()
if sm_version >= 90 and get_bool_env_var("SGL_ENABLE_JIT_DEEPGEMM", default="true"):
_enable_jit_deepgemm = True
logger = logging.getLogger(__name__)
if supports_custom_op():
def deep_gemm_fp8_fp8_bf16_nt(
A: torch.Tensor,
As: torch.Tensor,
B: torch.Tensor,
Bs: torch.Tensor,
C: torch.Tensor,
) -> None:
deep_gemm.gemm_fp8_fp8_bf16_nt((A, As), (B, Bs), C)
def deep_gemm_fp8_fp8_bf16_nt_fake(
A: torch.Tensor,
As: torch.Tensor,
B: torch.Tensor,
Bs: torch.Tensor,
C: torch.Tensor,
) -> None:
return
direct_register_custom_op(
op_name="deep_gemm_fp8_fp8_bf16_nt",
op_func=deep_gemm_fp8_fp8_bf16_nt,
mutates_args=["C"],
fake_impl=deep_gemm_fp8_fp8_bf16_nt_fake,
)
@triton.jit
def _per_token_group_quant_fp8(
# Pointers to inputs and output
y_ptr,
y_q_ptr,
y_s_ptr,
# Stride of input
y_stride,
# Collums of input
N,
# Avoid to divide zero
eps,
# Information for float8
fp8_min,
fp8_max,
# Meta-parameters
BLOCK: tl.constexpr,
):
"""A Triton-accelerated function to perform per-token-group quantization on a
tensor.
This function converts the tensor values into float8 values.
"""
# Map the program id to the row of X and Y it should compute.
g_id = tl.program_id(0)
y_ptr += g_id * y_stride
y_q_ptr += g_id * y_stride
y_s_ptr += g_id
cols = tl.arange(0, BLOCK) # N <= BLOCK
mask = cols < N
y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
# Quant
_absmax = tl.maximum(tl.max(tl.abs(y)), eps)
y_s = _absmax / fp8_max
y_s_inv = 1.0 / y_s
y_q = tl.clamp(y * y_s_inv, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)
tl.store(y_q_ptr + cols, y_q, mask=mask)
tl.store(y_s_ptr, y_s)
@triton.jit
def _per_token_group_quant_fp8_colmajor(
# Pointers to inputs and output
y_ptr,
y_q_ptr,
y_s_ptr,
group_size,
# Num columns of y
y_num_columns,
# Stride from one column to the next of y_s
y_s_col_stride,
# Avoid to divide zero
eps,
# Information for float8
fp8_min,
fp8_max,
# Meta-parameters
BLOCK: tl.constexpr,
):
"""A Triton-accelerated function to perform per-token-group
quantization on a tensor.
This function converts the tensor values into float8 values.
"""
# Map the program id to the row of X and Y it should compute.
g_id = tl.program_id(0)
y_ptr += g_id * group_size
y_q_ptr += g_id * group_size
# Convert g_id the flattened block coordinate to 2D so we can index
# into the output y_scales matrix
blocks_per_row = y_num_columns // group_size
scale_col = g_id % blocks_per_row
scale_row = g_id // blocks_per_row
y_s_ptr += scale_col * y_s_col_stride + scale_row
cols = tl.arange(0, BLOCK) # group_size <= BLOCK
mask = cols < group_size
y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
# Quant
_absmax = tl.maximum(tl.max(tl.abs(y)), eps)
y_s = _absmax / fp8_max
y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)
tl.store(y_q_ptr + cols, y_q, mask=mask)
tl.store(y_s_ptr, y_s)
def per_token_group_quant_fp8(
x: torch.Tensor,
group_size: int,
eps: float = 1e-10,
dtype: torch.dtype = fp8_type_,
column_major_scales: bool = False,
scale_tma_aligned: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Function to perform per-token-group quantization on an input tensor `x`.
It converts the tensor values into signed float8 values and returns the
quantized tensor along with the scaling factor used for quantization.
Args:
x: The input tenosr with ndim >= 2.
group_size: The group size used for quantization.
eps: The minimum to avoid dividing zero.
dtype: The dype of output tensor.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the scaling factor for quantization.
"""
assert (
x.shape[-1] % group_size == 0
), "the last dimension of `x` cannot be divisible by `group_size`"
assert x.is_contiguous(), "`x` is not contiguous"
finfo = torch.finfo(dtype)
fp8_max = finfo.max
if _is_hip:
fp8_max = 224.0
fp8_min = -fp8_max
x_q = torch.empty_like(x, device=x.device, dtype=dtype)
M = x.numel() // group_size
N = group_size
if column_major_scales:
if scale_tma_aligned:
# aligned to 4 * sizeof(float)
aligned_size = (x.shape[-2] + 3) // 4 * 4
x_s = torch.empty(
x.shape[:-2] + (x.shape[-1] // group_size, aligned_size),
device=x.device,
dtype=torch.float32,
).permute(-1, -2)[: x.shape[-2], :]
else:
x_s = torch.empty(
(x.shape[-1] // group_size,) + x.shape[:-1],
device=x.device,
dtype=torch.float32,
).permute(-1, -2)
else:
x_s = torch.empty(
x.shape[:-1] + (x.shape[-1] // group_size,),
device=x.device,
dtype=torch.float32,
)
BLOCK = triton.next_power_of_2(N)
# heuristics for number of warps
num_warps = min(max(BLOCK // 256, 1), 8)
num_stages = 1
if column_major_scales:
_per_token_group_quant_fp8_colmajor[(M,)](
x,
x_q,
x_s,
group_size,
x.shape[1],
x_s.stride(1),
eps,
fp8_min=fp8_min,
fp8_max=fp8_max,
BLOCK=BLOCK,
num_warps=num_warps,
num_stages=num_stages,
)
else:
_per_token_group_quant_fp8[(M,)](
x,
x_q,
x_s,
group_size,
N,
eps,
fp8_min=fp8_min,
fp8_max=fp8_max,
BLOCK=BLOCK,
num_warps=num_warps,
num_stages=num_stages,
)
return x_q, x_s
def sglang_per_token_group_quant_fp8(
x: torch.Tensor,
group_size: int,
eps: float = 1e-10,
dtype: torch.dtype = fp8_type_,
):
assert (
x.shape[-1] % group_size == 0
), "the last dimension of `x` cannot be divisible by `group_size`"
assert x.is_contiguous(), "`x` is not contiguous"
finfo = torch.finfo(dtype)
fp8_max = finfo.max
fp8_min = -fp8_max
x_q = torch.empty_like(x, device=x.device, dtype=dtype)
M = x.numel() // group_size
N = group_size
x_s = torch.empty(
x.shape[:-1] + (x.shape[-1] // group_size,),
device=x.device,
dtype=torch.float32,
)
sgl_per_token_group_quant_fp8(x, x_q, x_s, group_size, eps, fp8_min, fp8_max)
return x_q, x_s
def sglang_per_token_quant_fp8(
x: torch.Tensor,
dtype: torch.dtype = fp8_type_,
):
assert x.is_contiguous(), "`x` is not contiguous"
x_q = torch.empty_like(x, device=x.device, dtype=dtype)
x_s = torch.empty(
x.shape[0],
1,
device=x.device,
dtype=torch.float32,
)
sgl_per_token_quant_fp8(x, x_q, x_s)
return x_q, x_s
@triton.jit
def _static_quant_fp8(
# Pointers to inputs and output
y_ptr,
y_q_ptr,
y_s_ptr,
y_s_repeat_ptr,
# Stride of input
y_stride,
# Collums of input
N,
# Information for float8
fp8_min,
fp8_max,
# Meta-parameters
BLOCK: tl.constexpr,
REPEAT_SCALE: tl.constexpr,
):
"""A Triton-accelerated function to perform quantization using the given scale on a
tensor
This function converts the tensor values into float8 values.
"""
# Map the program id to the row of X and Y it should compute.
g_id = tl.program_id(0)
y_ptr += g_id * y_stride
y_q_ptr += g_id * y_stride
if REPEAT_SCALE:
y_s_repeat_ptr += g_id
cols = tl.arange(0, BLOCK) # N <= BLOCK
mask = cols < N
y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
y_s = tl.load(y_s_ptr).to(tl.float32)
y_s_inv = 1.0 / y_s
y_q = tl.clamp(y * y_s_inv, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)
tl.store(y_q_ptr + cols, y_q, mask=mask)
if REPEAT_SCALE:
tl.store(y_s_repeat_ptr, y_s)
def static_quant_fp8(
x: torch.Tensor,
x_s: torch.Tensor,
repeat_scale: bool = False,
dtype: torch.dtype = fp8_type_,
) -> Tuple[torch.Tensor, torch.Tensor]:
"""Function to perform static quantization using the given scale on an input tensor `x`.
It converts the tensor values into signed float8 values and returns the
quantized tensor along with the scaling factor used for quantization.
Args:
x: The input tenosr with ndim >= 2.
x_s: The quantization scale.
repeat_scale: Whether to broadcast per-tensor scale to per-channel scale.
dtype: The dype of output tensor.
Returns:
Tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the scaling factor for quantization.
"""
assert x.is_contiguous(), "`x` is not contiguous"
assert x_s.numel() == 1, "only supports per-tensor scale"
finfo = torch.finfo(dtype)
fp8_max = finfo.max
if _is_hip:
fp8_max = 224.0
fp8_min = -fp8_max
x_q = torch.empty_like(x, device=x.device, dtype=dtype)
M = x.numel() // x.shape[-1]
N = x.shape[-1]
if repeat_scale:
x_s_repeat = torch.empty(
(M, 1),
device=x.device,
dtype=torch.float32,
)
else:
x_s_repeat = None
BLOCK = triton.next_power_of_2(N)
# heuristics for number of warps
num_warps = min(max(BLOCK // 256, 1), 8)
num_stages = 1
_static_quant_fp8[(M,)](
x,
x_q,
x_s,
x_s_repeat,
N,
N,
fp8_min=fp8_min,
fp8_max=fp8_max,
BLOCK=BLOCK,
REPEAT_SCALE=repeat_scale,
num_warps=num_warps,
num_stages=num_stages,
)
x_s = x_s_repeat if repeat_scale else x_s
return x_q, x_s
@triton.jit
def _w8a8_block_fp8_matmul(
# Pointers to inputs and output
A,
B,
C,
As,
Bs,
# Shape for matmul
M,
N,
K,
# Block size for block-wise quantization
group_n,
group_k,
# Stride for inputs and output
stride_am,
stride_ak,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_As_m,
stride_As_k,
stride_Bs_k,
stride_Bs_n,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
):
"""Triton-accelerated function used to perform linear operations (dot
product) on input tensors `A` and `B` with block-wise quantization, and store the result in output
tensor `C`.
"""
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = A + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = B + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
As_ptrs = As + offs_am * stride_As_m
offs_bsn = offs_bn // group_n
Bs_ptrs = Bs + offs_bsn * stride_Bs_n
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
a = tl.load(a_ptrs, mask=offs_k[None, :] < K - k * BLOCK_SIZE_K, other=0.0)
b = tl.load(b_ptrs, mask=offs_k[:, None] < K - k * BLOCK_SIZE_K, other=0.0)
k_start = k * BLOCK_SIZE_K
offs_ks = k_start // group_k
a_s = tl.load(As_ptrs + offs_ks * stride_As_k)
b_s = tl.load(Bs_ptrs + offs_ks * stride_Bs_k)
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
if C.dtype.element_ty == tl.bfloat16:
c = accumulator.to(tl.bfloat16)
elif C.dtype.element_ty == tl.float16:
c = accumulator.to(tl.float16)
else:
c = accumulator.to(tl.float32)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = C + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
@triton.jit
def _w8a8_block_fp8_matmul_unrolledx4(
# Pointers to inputs and output
A,
B,
C,
As,
Bs,
# Shape for matmul
M,
N,
K,
# Block size for block-wise quantization
group_n,
group_k,
# Stride for inputs and output
stride_am,
stride_ak,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_As_m,
stride_As_k,
stride_Bs_k,
stride_Bs_n,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
):
"""Triton-accelerated function used to perform linear operations (dot
product) on input tensors `A` and `B` with block-wise quantization, and store the result in output
tensor `C`.
"""
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = A + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = B + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
As_ptrs = As + offs_am * stride_As_m
offs_bsn = offs_bn // group_n
Bs_ptrs = Bs + offs_bsn * stride_Bs_n
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
# manually unroll to 4 iterations
UNROLL_FACTOR = 4
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K * UNROLL_FACTOR)):
# 1st iteration
a = tl.load(
a_ptrs,
mask=offs_k[None, :] < K - (k * UNROLL_FACTOR) * BLOCK_SIZE_K,
other=0.0,
)
b = tl.load(
b_ptrs,
mask=offs_k[:, None] < K - (k * UNROLL_FACTOR) * BLOCK_SIZE_K,
other=0.0,
)
k_start = (k * UNROLL_FACTOR) * BLOCK_SIZE_K
offs_ks = k_start // group_k
a_s = tl.load(As_ptrs + offs_ks * stride_As_k)
b_s = tl.load(Bs_ptrs + offs_ks * stride_Bs_k)
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
# 2nd iteration
a = tl.load(
a_ptrs,
mask=offs_k[None, :] < K - (k * UNROLL_FACTOR + 1) * BLOCK_SIZE_K,
other=0.0,
)
b = tl.load(
b_ptrs,
mask=offs_k[:, None] < K - (k * UNROLL_FACTOR + 1) * BLOCK_SIZE_K,
other=0.0,
)
k_start = k_start + BLOCK_SIZE_K
offs_ks = k_start // group_k
a_s = tl.load(As_ptrs + offs_ks * stride_As_k)
b_s = tl.load(Bs_ptrs + offs_ks * stride_Bs_k)
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
# 3rd iteration
a = tl.load(
a_ptrs,
mask=offs_k[None, :] < K - (k * UNROLL_FACTOR + 2) * BLOCK_SIZE_K,
other=0.0,
)
b = tl.load(
b_ptrs,
mask=offs_k[:, None] < K - (k * UNROLL_FACTOR + 2) * BLOCK_SIZE_K,
other=0.0,
)
k_start = k_start + BLOCK_SIZE_K
offs_ks = k_start // group_k
a_s = tl.load(As_ptrs + offs_ks * stride_As_k)
b_s = tl.load(Bs_ptrs + offs_ks * stride_Bs_k)
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
# 4th iteration
a = tl.load(
a_ptrs,
mask=offs_k[None, :] < K - (k * UNROLL_FACTOR + 3) * BLOCK_SIZE_K,
other=0.0,
)
b = tl.load(
b_ptrs,
mask=offs_k[:, None] < K - (k * UNROLL_FACTOR + 3) * BLOCK_SIZE_K,
other=0.0,
)
k_start = k_start + BLOCK_SIZE_K
offs_ks = k_start // group_k
a_s = tl.load(As_ptrs + offs_ks * stride_As_k)
b_s = tl.load(Bs_ptrs + offs_ks * stride_Bs_k)
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
if C.dtype.element_ty == tl.bfloat16:
c = accumulator.to(tl.bfloat16)
elif C.dtype.element_ty == tl.float16:
c = accumulator.to(tl.float16)
else:
c = accumulator.to(tl.float32)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = C + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
@functools.lru_cache
def get_w8a8_block_fp8_configs(
N: int, K: int, block_n: int, block_k: int
) -> Optional[Dict[int, Any]]:
"""
Return optimized configurations for the w8a8 block fp8 kernel.
The return value will be a dictionary that maps an irregular grid of
batch sizes to configurations of the w8a8 block fp8 kernel. To evaluate the
kernel on a given batch size bs, the closest batch size in the grid should
be picked and the associated configuration chosen to invoke the kernel.
"""
# First look up if an optimized configuration is available in the configs
# directory
device_name = get_device_name().replace(" ", "_")
json_file_name = f"N={N},K={K},device_name={device_name},dtype=fp8_w8a8,block_shape=[{block_n}, {block_k}].json"
config_file_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name
)
if os.path.exists(config_file_path):
with open(config_file_path) as f:
logger.info(
"Using configuration from %s for W8A8 Block FP8 kernel.",
config_file_path,
)
# If a configuration has been found, return it
return {int(key): val for key, val in json.load(f).items()}
# If no optimized configuration is available, we will use the default
# configuration
logger.warning(
(
"Using default W8A8 Block FP8 kernel config. Performance might be sub-optimal! "
"Config file not found at %s"
),
config_file_path,
)
return None
def w8a8_block_fp8_matmul(
A: torch.Tensor,
B: torch.Tensor,
As: torch.Tensor,
Bs: torch.Tensor,
block_size: List[int],
output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
"""This function performs matrix multiplication with block-wise quantization.
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
The output is returned in the specified `output_dtype`.
Args:
A: The input tensor, e.g., activation.
B: The input tensor, e.g., weight.
As: The per-token-group quantization scale for `A`.
Bs: The per-block quantization scale for `B`.
block_size: The block size for per-block quantization. It should be 2-dim, e.g., [128, 128].
output_dytpe: The dtype of the returned tensor.
Returns:
torch.Tensor: The result of matmul.
"""
assert len(block_size) == 2
block_n, block_k = block_size[0], block_size[1]
assert A.shape[-1] == B.shape[-1]
assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous()
assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1]
M = A.numel() // A.shape[-1]
assert B.ndim == 2 and B.is_contiguous() and Bs.ndim == 2
N, K = B.shape
assert triton.cdiv(N, block_n) == Bs.shape[0]
assert triton.cdiv(K, block_k) == Bs.shape[1]
C_shape = A.shape[:-1] + (N,)
C = A.new_empty(C_shape, dtype=output_dtype)
configs = get_w8a8_block_fp8_configs(N, K, block_size[0], block_size[1])
if configs:
# If an optimal configuration map has been found, look up the
# optimal config
config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
else:
# Default config
# Block-wise quant: BLOCK_SIZE_K must be divisable by block_size[1]
config = {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": block_size[0],
"BLOCK_SIZE_K": block_size[1],
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 3,
}
def grid(META):
return (
triton.cdiv(M, META["BLOCK_SIZE_M"]) * triton.cdiv(N, META["BLOCK_SIZE_N"]),
)
# Use manually unrolledx4 kernel on AMD GPU when the grid size is small.
# Empirical testing shows the sweet spot lies when it's less than the # of
# compute units available on the device.
num_workgroups = triton.cdiv(M, config["BLOCK_SIZE_M"]) * triton.cdiv(
N, config["BLOCK_SIZE_N"]
)
# deepgemm only support bf16
if C.dtype == torch.bfloat16 and _enable_jit_deepgemm:
if supports_custom_op():
torch.ops.sglang.deep_gemm_fp8_fp8_bf16_nt(A, As, B, Bs, C)
else:
deep_gemm.gemm_fp8_fp8_bf16_nt((A, As), (B, Bs), C)
else:
kernel = (
_w8a8_block_fp8_matmul_unrolledx4
if (_is_hip == True and num_workgroups <= get_device_core_count())
else _w8a8_block_fp8_matmul
)
kernel[grid](
A,
B,
C,
As,
Bs,
M,
N,
K,
block_n,
block_k,
A.stride(-2),
A.stride(-1),
B.stride(1),
B.stride(0),
C.stride(-2),
C.stride(-1),
As.stride(-2),
As.stride(-1),
Bs.stride(1),
Bs.stride(0),
**config,
)
return C