141 lines
4.4 KiB
Python
141 lines
4.4 KiB
Python
import json
|
|
import unittest
|
|
|
|
import requests
|
|
|
|
from sglang.srt.utils import kill_process_tree
|
|
from sglang.test.test_utils import (
|
|
DEFAULT_MODEL_NAME_FOR_TEST,
|
|
DEFAULT_URL_FOR_TEST,
|
|
CustomTestCase,
|
|
popen_launch_server,
|
|
)
|
|
|
|
MANY_NEW_TOKENS_PROMPT = """
|
|
Please write an extremely detailed and vivid fantasy story, set in a world full of intricate magic systems, political intrigue, and complex characters.
|
|
Ensure that you thoroughly describe every scene, character's motivations, and the environment. Include long, engaging dialogues and elaborate on the inner thoughts of the characters.
|
|
Each section should be as comprehensive as possible to create a rich and immersive experience for the reader.
|
|
The story should span multiple events, challenges, and character developments over time. Aim to make the story at least 3,000 words long.
|
|
"""
|
|
|
|
|
|
class TestMatchedStop(CustomTestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls.model = DEFAULT_MODEL_NAME_FOR_TEST
|
|
cls.base_url = DEFAULT_URL_FOR_TEST
|
|
cls.process = popen_launch_server(
|
|
cls.model,
|
|
cls.base_url,
|
|
timeout=300,
|
|
other_args=["--max-running-requests", "10"],
|
|
)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
kill_process_tree(cls.process.pid)
|
|
|
|
def run_completions_generation(
|
|
self,
|
|
prompt=MANY_NEW_TOKENS_PROMPT,
|
|
max_tokens=1,
|
|
stop=None,
|
|
finish_reason=None,
|
|
matched_stop=None,
|
|
):
|
|
payload = {
|
|
"prompt": prompt,
|
|
"model": self.model,
|
|
"temperature": 0,
|
|
"top_p": 1,
|
|
"max_tokens": max_tokens,
|
|
}
|
|
|
|
if stop is not None:
|
|
payload["stop"] = stop
|
|
|
|
response_completions = requests.post(
|
|
self.base_url + "/v1/completions",
|
|
json=payload,
|
|
)
|
|
print(json.dumps(response_completions.json()))
|
|
print("=" * 100)
|
|
|
|
assert (
|
|
response_completions.json()["choices"][0]["finish_reason"] == finish_reason
|
|
)
|
|
assert response_completions.json()["choices"][0]["matched_stop"] == matched_stop
|
|
|
|
def run_chat_completions_generation(
|
|
self,
|
|
prompt=MANY_NEW_TOKENS_PROMPT,
|
|
max_tokens=1,
|
|
stop=None,
|
|
finish_reason=None,
|
|
matched_stop=None,
|
|
):
|
|
chat_payload = {
|
|
"model": self.model,
|
|
"messages": [
|
|
{"role": "system", "content": "You are a helpful AI assistant"},
|
|
{"role": "user", "content": prompt},
|
|
],
|
|
"temperature": 0,
|
|
"top_p": 1,
|
|
"max_tokens": max_tokens,
|
|
}
|
|
|
|
if stop is not None:
|
|
chat_payload["stop"] = stop
|
|
|
|
response_chat = requests.post(
|
|
self.base_url + "/v1/chat/completions",
|
|
json=chat_payload,
|
|
)
|
|
print(json.dumps(response_chat.json()))
|
|
print("=" * 100)
|
|
|
|
assert response_chat.json()["choices"][0]["finish_reason"] == finish_reason
|
|
assert response_chat.json()["choices"][0]["matched_stop"] == matched_stop
|
|
|
|
def test_finish_stop_str(self):
|
|
self.run_completions_generation(
|
|
max_tokens=1000, stop="\n", finish_reason="stop", matched_stop="\n"
|
|
)
|
|
self.run_chat_completions_generation(
|
|
max_tokens=1000, stop="\n", finish_reason="stop", matched_stop="\n"
|
|
)
|
|
|
|
def test_finish_stop_eos(self):
|
|
llama_format_prompt = """
|
|
<|begin_of_text|><|start_header_id|>system<|end_header_id|>
|
|
You are a helpful assistant.<|eot_id|><|start_header_id|>user<|end_header_id|>
|
|
|
|
What is 2 + 2?<|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
|
"""
|
|
eos_token_id = 128009
|
|
self.run_completions_generation(
|
|
prompt=llama_format_prompt,
|
|
max_tokens=1000,
|
|
finish_reason="stop",
|
|
matched_stop=eos_token_id,
|
|
)
|
|
self.run_chat_completions_generation(
|
|
prompt="What is 2 + 2?",
|
|
max_tokens=1000,
|
|
finish_reason="stop",
|
|
matched_stop=eos_token_id,
|
|
)
|
|
|
|
def test_finish_length(self):
|
|
self.run_completions_generation(
|
|
max_tokens=5, finish_reason="length", matched_stop=None
|
|
)
|
|
self.run_chat_completions_generation(
|
|
max_tokens=5, finish_reason="length", matched_stop=None
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|