sglang0.4.5.post1/test/srt/test_sagemaker_server.py

180 lines
5.9 KiB
Python

"""
python3 -m unittest test_sagemaker_server.TestSageMakerServer.test_chat_completion
"""
import json
import unittest
import requests
from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.utils import kill_process_tree
from sglang.test.test_utils import (
DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
popen_launch_server,
)
class TestSageMakerServer(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
cls.base_url = DEFAULT_URL_FOR_TEST
cls.api_key = "sk-123456"
cls.process = popen_launch_server(
cls.model,
cls.base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
api_key=cls.api_key,
)
cls.tokenizer = get_tokenizer(DEFAULT_SMALL_MODEL_NAME_FOR_TEST)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def run_chat_completion(self, logprobs, parallel_sample_num):
data = {
"model": self.model,
"messages": [
{"role": "system", "content": "You are a helpful AI assistant"},
{
"role": "user",
"content": "What is the capital of France? Answer in a few words.",
},
],
"temperature": 0,
"logprobs": logprobs is not None and logprobs > 0,
"top_logprobs": logprobs,
"n": parallel_sample_num,
}
headers = {"Authorization": f"Bearer {self.api_key}"}
response = requests.post(
f"{self.base_url}/invocations", json=data, headers=headers
).json()
if logprobs:
assert isinstance(
response["choices"][0]["logprobs"]["content"][0]["top_logprobs"][0][
"token"
],
str,
)
ret_num_top_logprobs = len(
response["choices"][0]["logprobs"]["content"][0]["top_logprobs"]
)
assert (
ret_num_top_logprobs == logprobs
), f"{ret_num_top_logprobs} vs {logprobs}"
assert len(response["choices"]) == parallel_sample_num
assert response["choices"][0]["message"]["role"] == "assistant"
assert isinstance(response["choices"][0]["message"]["content"], str)
assert response["id"]
assert response["created"]
assert response["usage"]["prompt_tokens"] > 0
assert response["usage"]["completion_tokens"] > 0
assert response["usage"]["total_tokens"] > 0
def run_chat_completion_stream(self, logprobs, parallel_sample_num=1):
data = {
"model": self.model,
"messages": [
{"role": "system", "content": "You are a helpful AI assistant"},
{
"role": "user",
"content": "What is the capital of France? Answer in a few words.",
},
],
"temperature": 0,
"logprobs": logprobs is not None and logprobs > 0,
"top_logprobs": logprobs,
"stream": True,
"stream_options": {"include_usage": True},
"n": parallel_sample_num,
}
headers = {"Authorization": f"Bearer {self.api_key}"}
response = requests.post(
f"{self.base_url}/invocations", json=data, stream=True, headers=headers
)
is_firsts = {}
for line in response.iter_lines():
line = line.decode("utf-8").replace("data: ", "")
if len(line) < 1 or line == "[DONE]":
continue
print(f"value: {line}")
line = json.loads(line)
usage = line.get("usage")
if usage is not None:
assert usage["prompt_tokens"] > 0
assert usage["completion_tokens"] > 0
assert usage["total_tokens"] > 0
continue
index = line.get("choices")[0].get("index")
data = line.get("choices")[0].get("delta")
if is_firsts.get(index, True):
assert data["role"] == "assistant"
is_firsts[index] = False
continue
if logprobs:
assert line.get("choices")[0].get("logprobs")
assert isinstance(
line.get("choices")[0]
.get("logprobs")
.get("content")[0]
.get("top_logprobs")[0]
.get("token"),
str,
)
assert isinstance(
line.get("choices")[0]
.get("logprobs")
.get("content")[0]
.get("top_logprobs"),
list,
)
ret_num_top_logprobs = len(
line.get("choices")[0]
.get("logprobs")
.get("content")[0]
.get("top_logprobs")
)
assert (
ret_num_top_logprobs == logprobs
), f"{ret_num_top_logprobs} vs {logprobs}"
assert isinstance(data["content"], str)
assert line["id"]
assert line["created"]
for index in [i for i in range(parallel_sample_num)]:
assert not is_firsts.get(
index, True
), f"index {index} is not found in the response"
def test_chat_completion(self):
for logprobs in [None, 5]:
for parallel_sample_num in [1, 2]:
self.run_chat_completion(logprobs, parallel_sample_num)
def test_chat_completion_stream(self):
for logprobs in [None, 5]:
for parallel_sample_num in [1, 2]:
self.run_chat_completion_stream(logprobs, parallel_sample_num)
if __name__ == "__main__":
unittest.main()