""" Copyright (c) 2024 by FlashInfer team. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import torch import flashinfer from flashinfer.testing.utils import bench_gpu_time def bench_deepseek_mla_decode(batch_size, seq_len, num_heads, backend): head_dim_ckv = 512 head_dim_kpe = 64 page_size = 1 q_nope = torch.randn( batch_size * 1, num_heads, head_dim_ckv, dtype=torch.half, device="cuda" ) q_pe = torch.zeros( batch_size * 1, num_heads, head_dim_kpe, dtype=torch.half, device="cuda" ) ckv = torch.randn( batch_size * seq_len, 1, head_dim_ckv, dtype=torch.half, device="cuda" ) kpe = torch.zeros( batch_size * seq_len, 1, head_dim_kpe, dtype=torch.half, device="cuda" ) sm_scale = 1.0 / ((head_dim_ckv + head_dim_kpe) ** 0.5) workspace_buffer = torch.empty(128 * 1024 * 1024, dtype=torch.int8).to(0) wrapper = flashinfer.mla.BatchMLAPagedAttentionWrapper( workspace_buffer, backend=backend ) q_indptr = torch.arange(0, batch_size + 1).to(0).int() kv_indptr = torch.arange(0, batch_size + 1).to(0).int() * seq_len kv_indices = torch.arange(0, batch_size * seq_len).to(0).int() kv_lens = torch.full((batch_size,), seq_len, dtype=torch.int32).to(0) wrapper.plan( q_indptr, kv_indptr, kv_indices, kv_lens, num_heads, head_dim_ckv, head_dim_kpe, page_size, False, # causal sm_scale, q_nope.dtype, ckv.dtype, ) o = wrapper.run(q_nope, q_pe, ckv, kpe, return_lse=False) measurements = bench_gpu_time( lambda: wrapper.run(q_nope, q_pe, ckv, kpe), dry_run_time_ms=100, repeat_time_ms=1000, ) ms = np.median(measurements) io = sum([_.numel() * _.element_size() for _ in [q_nope, q_pe, ckv, kpe, o]]) flops = 2 * batch_size * num_heads * (2 * head_dim_ckv + head_dim_kpe) * seq_len print(f"Config: batch_size={batch_size}, seq_len={seq_len}, num_heads={num_heads}") print(f"Memory bandwidth: {io * 1e-6 / ms:.2f} GB/s") print(f"FLOPs: {flops * 1e-9 / ms:.2f} TFLOPs") if __name__ == "__main__": for seq_len in [1024, 2048, 8192]: for batch_size in [64, 128, 768]: for num_heads in [64, 128]: bench_deepseek_mla_decode(batch_size, seq_len, num_heads, "auto")