/* * Copyright (c) 2025 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include "batch_mla_config.inc" #include "pytorch_conversion_utils.h" #include "pytorch_extension_utils.h" using namespace flashinfer; void BatchMLAPagedAttentionRun(at::Tensor float_workspace_buffer, at::Tensor int_workspace_buffer, at::Tensor plan_info_vec, at::Tensor q_nope, at::Tensor q_pe, at::Tensor ckv_cache, at::Tensor kpe_cache, at::Tensor kv_indices, at::Tensor o, std::optional maybe_lse, int64_t mask_mode_code, int64_t num_heads, int64_t page_size, double sm_scale) { // q_nope: [n, num_heads, head_dim_ckv] // q_pe: [n, num_heads, head_dim_kpe] // ckv_cache: [num_pages, page_size, head_dim_ckv] // kpe_cache: [num_pages, page_size, head_dim_kpe] MLAPlanInfo plan_info; plan_info.FromVector(tensor_to_vec(plan_info_vec)); auto device = q_nope.device(); void* float_buffer_ptr = float_workspace_buffer.data_ptr(); void* int_buffer_ptr = int_workspace_buffer.data_ptr(); const MaskMode mask_mode = static_cast(mask_mode_code); auto q_scalar_type = q_nope.scalar_type(); auto kv_scalar_type = ckv_cache.scalar_type(); unsigned int q_nope_stride_n = q_nope.stride(0); unsigned int q_nope_stride_h = q_nope.stride(1); unsigned int q_pe_stride_n = q_pe.stride(0); unsigned int q_pe_stride_h = q_pe.stride(1); unsigned int ckv_stride_page = ckv_cache.stride(0); unsigned int ckv_stride_n = ckv_cache.stride(1); unsigned int kpe_stride_page = kpe_cache.stride(0); unsigned int kpe_stride_n = kpe_cache.stride(1); unsigned int o_stride_n = o.stride(0); unsigned int o_stride_h = o.stride(1); const c10::cuda::OptionalCUDAGuard device_guard(device); const cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); DISPATCH_context( DTypeQ, DTypeKV, DTypeO, IdType, MASK_MODE, HEAD_DIM_CKV, HEAD_DIM_KPE, Params, [&] { Params params; params.q_nope = static_cast(q_nope.data_ptr()); params.q_pe = static_cast(q_pe.data_ptr()); params.ckv = static_cast(ckv_cache.data_ptr()); params.kpe = static_cast(kpe_cache.data_ptr()); params.q_indptr = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.q_indptr_offset); params.kv_indptr = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.kv_indptr_offset); params.partial_indptr = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.partial_indptr_offset); params.kv_indices = static_cast(kv_indices.data_ptr()); params.q_len = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.q_len_offset); params.kv_len = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.kv_len_offset); params.q_start = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.q_start_offset); params.kv_start = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.kv_start_offset); params.kv_end = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.kv_end_offset); params.work_indptr = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.work_indptr_offset); params.merge_packed_offset_start = GetPtrFromBaseOffset( int_buffer_ptr, plan_info.merge_packed_offset_start_offset); params.merge_packed_offset_end = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.merge_packed_offset_end_offset); params.merge_partial_packed_offset_start = GetPtrFromBaseOffset( int_buffer_ptr, plan_info.merge_partial_packed_offset_start_offset); params.merge_partial_packed_offset_end = GetPtrFromBaseOffset( int_buffer_ptr, plan_info.merge_partial_packed_offset_end_offset); params.merge_partial_stride = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.merge_partial_stride_offset); params.final_o = static_cast(o.data_ptr()); params.final_lse = maybe_lse.has_value() ? static_cast(maybe_lse->data_ptr()) : nullptr; params.partial_o = GetPtrFromBaseOffset(float_buffer_ptr, plan_info.partial_o_offset); params.partial_lse = GetPtrFromBaseOffset(float_buffer_ptr, plan_info.partial_lse_offset); params.num_heads = uint_fastdiv(num_heads); params.block_size = uint_fastdiv(page_size); params.q_nope_stride_n = q_nope_stride_n; params.q_nope_stride_h = q_nope_stride_h; params.q_pe_stride_n = q_pe_stride_n; params.q_pe_stride_h = q_pe_stride_h; params.ckv_stride_page = ckv_stride_page; params.ckv_stride_n = ckv_stride_n; params.kpe_stride_page = kpe_stride_page; params.kpe_stride_n = kpe_stride_n; params.o_stride_n = o_stride_n; params.o_stride_h = o_stride_h; params.sm_scale = sm_scale; cudaError_t status = mla::BatchMLAPagedAttention( params, plan_info.num_blks_x, plan_info.num_blks_y, stream); TORCH_CHECK(status == cudaSuccess, "Failed to run MLA, error: ", cudaGetErrorString(status)); }); }