/* * Copyright (c) 2023 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include "batch_prefill_config.inc" #include "pytorch_conversion_utils.h" #include "pytorch_extension_utils.h" namespace flashinfer { template cudaError_t BatchPrefillWithPagedKVCacheDispatched(Params params, typename Params::DTypeO* tmp_v, float* tmp_s, bool enable_pdl, cudaStream_t stream); template cudaError_t BatchPrefillWithRaggedKVCacheDispatched(Params params, typename Params::DTypeO* tmp_v, float* tmp_s, bool enable_pdl, cudaStream_t stream); } // namespace flashinfer using namespace flashinfer; at::Tensor BatchPrefillWithKVCachePlan( at::Tensor float_workspace_buffer, at::Tensor int_workspace_buffer, at::Tensor page_locked_int_workspace_buffer, at::Tensor qo_indptr, at::Tensor kv_indptr, at::Tensor kv_len_arr, int64_t total_num_rows, int64_t batch_size, int64_t num_qo_heads, int64_t num_kv_heads, int64_t page_size, bool enable_cuda_graph, int64_t head_dim_qk, int64_t head_dim_vo, bool causal) { size_t float_workspace_size_in_bytes = float_workspace_buffer.size(0) * float_workspace_buffer.element_size(); size_t int_workspace_size_in_bytes = int_workspace_buffer.size(0) * int_workspace_buffer.element_size(); PrefillPlanInfo plan_info; const c10::cuda::OptionalCUDAGuard device_guard(float_workspace_buffer.device()); const cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); cudaError_t status = PrefillPlan( float_workspace_buffer.data_ptr(), float_workspace_size_in_bytes, int_workspace_buffer.data_ptr(), page_locked_int_workspace_buffer.data_ptr(), int_workspace_size_in_bytes, plan_info, qo_indptr.data_ptr(), kv_indptr.data_ptr(), total_num_rows, batch_size, num_qo_heads, num_kv_heads, head_dim_qk, head_dim_vo, page_size, enable_cuda_graph, /*sizeof_dtype_o=*/2, stream); TORCH_CHECK(status == cudaSuccess, "Failed to plan prefill with error: ", cudaGetErrorString(status)); return vec_to_tensor(plan_info.ToVector()); } void BatchPrefillWithRaggedKVCacheRun(at::Tensor float_workspace_buffer, at::Tensor int_workspace_buffer, at::Tensor plan_info_vec, at::Tensor q, at::Tensor k, at::Tensor v, at::Tensor qo_indptr, at::Tensor kv_indptr, at::Tensor o, std::optional maybe_lse, int64_t mask_mode_code, int64_t layout, int64_t window_left, bool enable_pdl ADDITIONAL_FUNC_PARAMS) { PrefillPlanInfo plan_info; plan_info.FromVector(tensor_to_vec(plan_info_vec)); QKVLayout kv_layout = static_cast(layout); int64_t num_qo_heads = q.size(1); int64_t head_dim_qk = q.size(2); int64_t num_kv_heads = (kv_layout == QKVLayout::kNHD) ? k.size(1) : k.size(0); uint32_t q_stride_n = q.stride(0), q_stride_h = q.stride(1), k_stride_n, k_stride_h, v_stride_n, v_stride_h; if (kv_layout == QKVLayout::kNHD) { k_stride_n = k.stride(0); k_stride_h = k.stride(1); v_stride_n = v.stride(0); v_stride_h = v.stride(1); } else { k_stride_h = k.stride(0); k_stride_n = k.stride(1); v_stride_h = v.stride(0); v_stride_n = v.stride(1); } if (maybe_lse) { const auto& lse = *maybe_lse; TORCH_CHECK(lse.size(0) == q.size(0), lse.size(0), q.size(0)); TORCH_CHECK(lse.size(1) == q.size(1), lse.size(1), q.size(1)); } void* float_buffer_ptr = float_workspace_buffer.data_ptr(); void* int_buffer_ptr = int_workspace_buffer.data_ptr(); const MaskMode mask_mode = static_cast(mask_mode_code); auto q_scalar_type = q.scalar_type(); auto kv_scalar_type = k.scalar_type(); const c10::cuda::OptionalCUDAGuard device_guard(float_workspace_buffer.device()); const cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); DISPATCH_context( DTypeQ, DTypeKV, DTypeO, IdType, MASK_MODE, HEAD_DIM_QK, HEAD_DIM_VO, POS_ENCODING_MODE, USE_SLIDING_WINDOW, USE_LOGITS_SOFT_CAP, USE_FP16_QK_REDUCTION, AttentionVariant, RaggedParams, PagedParams, [&] { RaggedParams params; params.q = static_cast(q.data_ptr()); params.k = static_cast(k.data_ptr()); params.v = static_cast(v.data_ptr()); params.o = static_cast(o.data_ptr()); params.lse = maybe_lse ? static_cast(maybe_lse->data_ptr()) : nullptr; params.q_indptr = static_cast(qo_indptr.data_ptr()); params.kv_indptr = static_cast(kv_indptr.data_ptr()); params.num_qo_heads = num_qo_heads; params.num_kv_heads = num_kv_heads; params.group_size = uint_fastdiv(num_qo_heads / num_kv_heads); params.q_stride_n = q_stride_n; params.q_stride_h = q_stride_h; params.k_stride_n = k_stride_n; params.k_stride_h = k_stride_h; params.v_stride_n = v_stride_n; params.v_stride_h = v_stride_h; params.window_left = window_left; params.request_indices = nullptr; params.qo_tile_indices = nullptr; params.kv_tile_indices = nullptr; params.merge_indptr = nullptr; params.o_indptr = nullptr; params.kv_chunk_size_ptr = nullptr; params.block_valid_mask = nullptr; params.total_num_rows = nullptr; params.max_total_num_rows = 0; params.padded_batch_size = 0; params.partition_kv = false; ADDITIONAL_PARAMS_SETTER DTypeO* tmp_v = nullptr; float* tmp_s = nullptr; params.request_indices = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.request_indices_offset); params.qo_tile_indices = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.qo_tile_indices_offset); params.kv_tile_indices = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.kv_tile_indices_offset); params.o_indptr = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.o_indptr_offset); params.kv_chunk_size_ptr = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.kv_chunk_size_ptr_offset); if (plan_info.split_kv) { params.merge_indptr = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.merge_indptr_offset); tmp_v = GetPtrFromBaseOffset(float_buffer_ptr, plan_info.v_offset); tmp_s = GetPtrFromBaseOffset(float_buffer_ptr, plan_info.s_offset); if (plan_info.enable_cuda_graph) { params.block_valid_mask = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.block_valid_mask_offset); } } params.padded_batch_size = plan_info.padded_batch_size; params.max_total_num_rows = plan_info.total_num_rows; if (plan_info.enable_cuda_graph) { params.total_num_rows = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.total_num_rows_offset); } cudaError_t status = cudaSuccess; DISPATCH_CTA_TILE_Q(plan_info.cta_tile_q, CTA_TILE_Q, { status = flashinfer::BatchPrefillWithRaggedKVCacheDispatched< CTA_TILE_Q, HEAD_DIM_QK, HEAD_DIM_VO, POS_ENCODING_MODE, /*use_fp16_qk_reduction=*/USE_FP16_QK_REDUCTION, MASK_MODE, AttentionVariant, RaggedParams>(params, tmp_v, tmp_s, enable_pdl, stream); }); TORCH_CHECK(status == cudaSuccess, "BatchPrefillWithRaggedKVCache failed with error ", cudaGetErrorString(status)); return true; }); } void BatchPrefillWithPagedKVCacheRun( at::Tensor float_workspace_buffer, at::Tensor int_workspace_buffer, at::Tensor plan_info_vec, at::Tensor q, at::Tensor paged_k_cache, at::Tensor paged_v_cache, at::Tensor qo_indptr, at::Tensor paged_kv_indptr, at::Tensor paged_kv_indices, at::Tensor paged_kv_last_page_len, at::Tensor o, std::optional maybe_lse, int64_t mask_mode_code, int64_t layout, int64_t window_left, bool enable_pdl ADDITIONAL_FUNC_PARAMS) { PrefillPlanInfo plan_info; plan_info.FromVector(tensor_to_vec(plan_info_vec)); QKVLayout kv_layout = static_cast(layout); auto device = q.device(); int64_t batch_size = paged_kv_indptr.size(0) - 1; int64_t num_qo_heads = q.size(1); int64_t num_kv_heads, page_size; uint32_t head_dim_qk = q.size(2); if (kv_layout == QKVLayout::kHND) { num_kv_heads = paged_k_cache.size(1); page_size = paged_k_cache.size(2); } else { page_size = paged_k_cache.size(1); num_kv_heads = paged_k_cache.size(2); } if (maybe_lse) { const auto& lse = *maybe_lse; TORCH_CHECK(lse.size(0) == q.size(0), lse.size(0), q.size(0)); TORCH_CHECK(lse.size(1) == q.size(1), lse.size(1), q.size(1)); } void* float_buffer_ptr = static_cast(float_workspace_buffer.data_ptr()); void* int_buffer_ptr = static_cast(int_workspace_buffer.data_ptr()); const MaskMode mask_mode = static_cast(mask_mode_code); auto q_scalar_type = q.scalar_type(); auto kv_scalar_type = paged_k_cache.scalar_type(); // get q_stride_n and q_stride_h const auto q_stride_n = q.stride(0); const auto q_stride_h = q.stride(1); // get kv_cache_strides const int64_t* kv_cache_strides = nullptr; auto k_strides = paged_k_cache.strides(); auto v_strides = paged_v_cache.strides(); TORCH_CHECK(k_strides == v_strides, "k/v strides must be identical"); kv_cache_strides = k_strides.data(); const c10::cuda::OptionalCUDAGuard device_guard(float_workspace_buffer.device()); const cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); DISPATCH_context( DTypeQ, DTypeKV, DTypeO, IdType, MASK_MODE, HEAD_DIM_QK, HEAD_DIM_VO, POS_ENCODING_MODE, USE_SLIDING_WINDOW, USE_LOGITS_SOFT_CAP, USE_FP16_QK_REDUCTION, AttentionVariant, RaggedParams, PagedParams, [&] { PagedParams params; params.q = static_cast(q.data_ptr()); paged_kv_t paged_kv( num_kv_heads, page_size, HEAD_DIM_VO, batch_size, kv_layout, static_cast(paged_k_cache.data_ptr()), static_cast(paged_v_cache.data_ptr()), kv_cache_strides, static_cast(paged_kv_indices.data_ptr()), static_cast(paged_kv_indptr.data_ptr()), static_cast(paged_kv_last_page_len.data_ptr())); params.paged_kv = paged_kv; params.q_indptr = static_cast(qo_indptr.data_ptr()); params.o = static_cast(o.data_ptr()); params.lse = maybe_lse ? static_cast(maybe_lse->data_ptr()) : nullptr; params.num_qo_heads = num_qo_heads; params.group_size = uint_fastdiv(num_qo_heads / paged_kv.num_heads); params.q_stride_n = q_stride_n; params.q_stride_h = q_stride_h; params.window_left = window_left; params.request_indices = nullptr; params.qo_tile_indices = nullptr; params.kv_tile_indices = nullptr; params.merge_indptr = nullptr; params.o_indptr = nullptr; params.kv_chunk_size_ptr = nullptr; params.block_valid_mask = nullptr; params.total_num_rows = nullptr; params.max_total_num_rows = 0; params.padded_batch_size = 0; params.partition_kv = false; ADDITIONAL_PARAMS_SETTER DTypeO* tmp_v = nullptr; float* tmp_s = nullptr; params.request_indices = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.request_indices_offset); params.qo_tile_indices = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.qo_tile_indices_offset); params.kv_tile_indices = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.kv_tile_indices_offset); params.o_indptr = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.o_indptr_offset); params.kv_chunk_size_ptr = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.kv_chunk_size_ptr_offset); if (plan_info.split_kv) { params.merge_indptr = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.merge_indptr_offset); tmp_v = GetPtrFromBaseOffset(float_buffer_ptr, plan_info.v_offset); tmp_s = GetPtrFromBaseOffset(float_buffer_ptr, plan_info.s_offset); if (plan_info.enable_cuda_graph) { params.block_valid_mask = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.block_valid_mask_offset); } } params.padded_batch_size = plan_info.padded_batch_size; params.max_total_num_rows = plan_info.total_num_rows; if (plan_info.enable_cuda_graph) { params.total_num_rows = GetPtrFromBaseOffset(int_buffer_ptr, plan_info.total_num_rows_offset); } cudaError_t status = cudaSuccess; DISPATCH_CTA_TILE_Q(plan_info.cta_tile_q, CTA_TILE_Q, { status = flashinfer::BatchPrefillWithPagedKVCacheDispatched< CTA_TILE_Q, HEAD_DIM_QK, HEAD_DIM_VO, POS_ENCODING_MODE, /*use_fp16_qk_reduction=*/USE_FP16_QK_REDUCTION, MASK_MODE, AttentionVariant, PagedParams>(params, tmp_v, tmp_s, enable_pdl, stream); }); TORCH_CHECK(status == cudaSuccess, "BatchPrefillWithPagedKVCache failed with error ", cudaGetErrorString(status)); return true; }); }