/* * Copyright (c) 2024 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include "pytorch_extension_utils.h" using namespace flashinfer; using namespace flashinfer::attention; void CutlassMLAPagedAttention(at::Tensor workspace, at::Tensor out, at::Tensor lse, at::Tensor q_nope_pe, at::Tensor ckv_kpe_cache, at::Tensor kv_lens, at::Tensor page_table) { const c10::cuda::OptionalCUDAGuard device_guard(q_nope_pe.device()); auto stream = at::cuda::getCurrentCUDAStream(); int device_index = q_nope_pe.device().index(); int batches = q_nope_pe.sizes()[0]; int page_count_per_seq = page_table.sizes()[1]; int page_count_total = ckv_kpe_cache.sizes()[0]; int page_size = ckv_kpe_cache.sizes()[1]; DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(q_nope_pe.scalar_type(), c_type, [&] { using cutlass_t = cutlass_dtype_t; auto status = runMla( workspace.data_ptr(), out.data_ptr(), lse.data_ptr(), q_nope_pe.data_ptr(), ckv_kpe_cache.data_ptr(), kv_lens.data_ptr(), page_table.data_ptr(), batches, page_count_per_seq, page_count_total, page_size, device_index, stream); TORCH_CHECK(status == cudaSuccess, "Failed to run CutlassMLAPagedAttention: ", cudaGetErrorString(status)); return true; }); }