/* * Copyright (c) 2023 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "pytorch_extension_utils.h" void rmsnorm(at::Tensor& out, at::Tensor& input, at::Tensor& weight, double eps, bool enable_pdl); void fused_add_rmsnorm(at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps, bool enable_pdl); void gemma_rmsnorm(at::Tensor& out, at::Tensor& input, at::Tensor& weight, double eps, bool enable_pdl); void gemma_fused_add_rmsnorm(at::Tensor& input, at::Tensor& residual, at::Tensor& weight, double eps, bool enable_pdl); TORCH_LIBRARY_FRAGMENT(TORCH_EXTENSION_NAME, m) { // Root mean square normalization m.def("rmsnorm", rmsnorm); // Fused add root mean square normalization m.def("fused_add_rmsnorm", fused_add_rmsnorm); // Gemma Root mean square normalization m.def("gemma_rmsnorm", gemma_rmsnorm); // Gemma Fused add root mean square normalization m.def("gemma_fused_add_rmsnorm", gemma_fused_add_rmsnorm); }