/* * Copyright (c) 2025 by FlashInfer team. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include "pytorch_extension_utils.h" #define DISPATCH_mask_mode(mask_mode, MASK_MODE, ...) \ [&]() -> bool { \ if (mask_mode == MaskMode::kNone) { \ constexpr MaskMode MASK_MODE = MaskMode::kNone; \ return __VA_ARGS__(); \ } else if (mask_mode == MaskMode::kCausal) { \ constexpr MaskMode MASK_MODE = MaskMode::kCausal; \ return __VA_ARGS__(); \ } \ return false; \ }() #define DISPATCH_head_dim(head_dim_qk, head_dim_vo, HEAD_DIM_QK, HEAD_DIM_VO, ...) \ [&]() -> bool { \ if (head_dim_qk == 192 && head_dim_vo == 128) { \ constexpr int HEAD_DIM_QK = 192; \ constexpr int HEAD_DIM_VO = 128; \ return __VA_ARGS__(); \ } else if (head_dim_qk == 128 && head_dim_vo == 128) { \ constexpr int HEAD_DIM_QK = 128; \ constexpr int HEAD_DIM_VO = 128; \ return __VA_ARGS__(); \ } \ return false; \ }() #define DISPATCH_DTYPE_IN_OUT(in_dtype, out_dtype, c_type_in, c_type_out, ...) \ [&]() -> bool { \ if (in_dtype == out_dtype) { \ return DISPATCH_PYTORCH_DTYPE_TO_CTYPE_FP16(in_dtype, c_type_in, [&] { \ using c_type_out = c_type_in; \ return __VA_ARGS__(); \ }); \ } \ return false; \ }() #define DISPATCH_context(DTypeIn, DTypeOut, HEAD_DIM_QK, HEAD_DIM_VO, MaskMode, ...) \ { \ DISPATCH_mask_mode(mask_mode, MaskMode, [&] { \ return DISPATCH_DTYPE_IN_OUT(scalar_type_in, scalar_type_out, DTypeIn, DTypeOut, [&] { \ return DISPATCH_head_dim(head_dim_qk, head_dim_vo, HEAD_DIM_QK, HEAD_DIM_VO, \ [&] { return __VA_ARGS__(); }); \ }); \ }); \ } using namespace flashinfer; void FMHACutlassSM100Run(at::Tensor workspace_buffer, at::Tensor q, at::Tensor k, at::Tensor v, at::Tensor qo_segment_offsets, at::Tensor kv_segment_offsets, at::Tensor work_indptr, at::Tensor qo_tile_indices, at::Tensor qo_head_indices, at::Tensor batch_indices, at::Tensor o, std::optional maybe_lse, int64_t mask_mode_code, double sm_scale, int64_t num_qo_heads, int64_t num_kv_heads, int64_t head_dim_qk, int64_t head_dim_vo, int64_t max_qo_len) { CHECK(q.scalar_type() == k.scalar_type()); auto scalar_type_in = q.scalar_type(); auto scalar_type_out = o.scalar_type(); MaskMode mask_mode = static_cast(mask_mode_code); int total_qo_len = q.size(0); int total_kv_len = k.size(0); int batch_size = qo_segment_offsets.size(0) - 1; int q_stride_n = q.stride(0); int q_stride_h = q.stride(1); int k_stride_n = k.stride(0); int k_stride_h = k.stride(1); int v_stride_n = v.stride(0); int v_stride_h = v.stride(1); const c10::cuda::OptionalCUDAGuard device_guard(qo_segment_offsets.device()); const cudaStream_t stream = c10::cuda::getCurrentCUDAStream(); DISPATCH_context(DTypeIn, DTypeOut, HEAD_DIM_QK, HEAD_DIM_VO, MASK_MODE, [&] { using cutlass_type_in = cutlass_dtype_t; using cutlass_type_out = cutlass_dtype_t; using TILE_Q = _256; using TILE_KV = _128; using D_QK = cute::Int; using D_VO = cute::Int; using TileShapeQK = Shape; using TileShapePV = Shape; using CutlassMaskMode = typename std::conditional::type; auto status = run_fmha_fwd( workspace_buffer.data_ptr(), static_cast(q.data_ptr()), static_cast(k.data_ptr()), static_cast(v.data_ptr()), static_cast(qo_segment_offsets.data_ptr()), static_cast(kv_segment_offsets.data_ptr()), static_cast(work_indptr.data_ptr()), static_cast(qo_tile_indices.data_ptr()), static_cast(qo_head_indices.data_ptr()), static_cast(batch_indices.data_ptr()), static_cast(o.data_ptr()), maybe_lse.has_value() ? static_cast(maybe_lse->data_ptr()) : nullptr, mask_mode_code, sm_scale, num_qo_heads, num_kv_heads, head_dim_qk, head_dim_vo, q_stride_n, q_stride_h, k_stride_n, k_stride_h, v_stride_n, v_stride_h, batch_size, total_qo_len, total_kv_len, max_qo_len, stream); TORCH_CHECK(status == cudaSuccess, "Cutlass FMHA forward pass failed", cudaGetErrorString(status)); return true; }); }