""" Copyright (c) 2025 by FlashInfer team. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import argparse import torch import flashinfer from flashinfer.profiler import export_to_perfetto_trace def profile_persistent_batch_attention( kv_lens, qo_lens, page_size, num_kv_heads, num_qo_heads, head_dim, layout, test_dtype, causal, profiler_buffer_size, device="cuda", ): seq_lens = torch.tensor(kv_lens, dtype=torch.int32) q_lens = torch.tensor(qo_lens, dtype=torch.int32) seq_lens_blocks = torch.ceil(seq_lens / page_size).int() q_indptr = torch.cat([torch.tensor([0]), torch.cumsum(q_lens, 0)], dim=0).int() kv_indptr = torch.cat( [torch.tensor([0]), torch.cumsum(seq_lens_blocks, 0)], dim=0 ).int() num_blocks = kv_indptr[-1].item() q = torch.rand( q_indptr[-1].item(), num_qo_heads, head_dim, device=device, dtype=test_dtype ) if layout == "NHD": kv_data = torch.randn( num_blocks, 2, page_size, num_kv_heads, head_dim, dtype=test_dtype, device=device, ) elif layout == "HND": kv_data = torch.randn( num_blocks, 2, num_kv_heads, page_size, head_dim, dtype=test_dtype, device=device, ) wrapper = flashinfer.BatchAttention(kv_layout=layout) wrapper.plan( q_indptr.to(device), kv_indptr.to(device), torch.arange(num_blocks).int().to(device), seq_lens.to(device), num_qo_heads, num_kv_heads, head_dim, head_dim, page_size, causal=causal, q_data_type=test_dtype, kv_data_type=test_dtype, use_profiler=True, ) profiler_buffer = torch.zeros( (profiler_buffer_size,), dtype=torch.uint64, device=device ) # warmup wrapper.run(q, kv_data, profiler_buffer=profiler_buffer) profiler_buffer.zero_() wrapper.run(q, kv_data, profiler_buffer=profiler_buffer) trace_name = "batch_attention.perfetto-trace" events = ["prefill", "decode", "reduction"] export_to_perfetto_trace(profiler_buffer, events, trace_name) print(f"Profile trace exported to {trace_name}") def persistent_batch_attention( kv_lens, qo_lens, page_size, num_kv_heads, num_qo_heads, head_dim, layout, test_dtype, causal, device="cuda", ): seq_lens = torch.tensor(kv_lens, dtype=torch.int32) q_lens = torch.tensor(qo_lens, dtype=torch.int32) seq_lens_blocks = torch.ceil(seq_lens / page_size).int() q_indptr = torch.cat([torch.tensor([0]), torch.cumsum(q_lens, 0)], dim=0).int() kv_indptr = torch.cat( [torch.tensor([0]), torch.cumsum(seq_lens_blocks, 0)], dim=0 ).int() num_blocks = kv_indptr[-1].item() q = torch.rand( q_indptr[-1].item(), num_qo_heads, head_dim, device=device, dtype=test_dtype ) if layout == "NHD": kv_data = torch.randn( num_blocks, 2, page_size, num_kv_heads, head_dim, dtype=test_dtype, device=device, ) elif layout == "HND": kv_data = torch.randn( num_blocks, 2, num_kv_heads, page_size, head_dim, dtype=test_dtype, device=device, ) wrapper = flashinfer.BatchAttention(kv_layout=layout) wrapper.plan( q_indptr.to(device), kv_indptr.to(device), torch.arange(num_blocks).int().to(device), seq_lens.to(device), num_qo_heads, num_kv_heads, head_dim, head_dim, page_size, causal=causal, q_data_type=test_dtype, kv_data_type=test_dtype, ) wrapper.run(q, kv_data) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--profiler-buffer-size", type=int, default=1048576) parser.add_argument("--use-profiler", action="store_true") args = parser.parse_args() seq_len_config = [(600, 1)] * 122 + [(10000, 17)] * 8 kv_lens = [p[0] for p in seq_len_config] qo_lens = [p[1] for p in seq_len_config] page_size = 1 num_kv_heads = 4 num_qo_heads = 28 head_dim = 128 layout = "NHD" test_dtype = torch.bfloat16 causal = True if args.use_profiler: profile_persistent_batch_attention( kv_lens=kv_lens, qo_lens=qo_lens, profiler_buffer_size=args.profiler_buffer_size, page_size=page_size, num_kv_heads=num_kv_heads, num_qo_heads=num_qo_heads, head_dim=head_dim, layout=layout, test_dtype=test_dtype, causal=causal, ) else: persistent_batch_attention( kv_lens=kv_lens, qo_lens=qo_lens, page_size=page_size, num_kv_heads=num_kv_heads, num_qo_heads=num_qo_heads, head_dim=head_dim, layout=layout, test_dtype=test_dtype, causal=causal, )