""" Copyright (c) 2023 by FlashInfer team. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import itertools import torch import flashinfer from flashinfer.jit import JitSpec from flashinfer.utils import is_fa3_backend_supported, is_sm90a_supported def gen_decode_attention_modules( q_dtypes, kv_dtypes, head_dims, pos_encoding_modes, use_sliding_window_options, use_logits_soft_cap_options, ) -> list[JitSpec]: jit_specs: list[JitSpec] = [] for ( q_dtype, kv_dtype, head_dim, pos_encoding_mode, use_sliding_window, use_logits_soft_cap, ) in itertools.product( q_dtypes, kv_dtypes, head_dims, pos_encoding_modes, use_sliding_window_options, use_logits_soft_cap_options, ): if q_dtype != kv_dtype: if kv_dtype.itemsize > 1: continue # skip fp16/bf16 mixed precision jit_specs.append( flashinfer.decode.gen_single_decode_module( q_dtype, kv_dtype, q_dtype, head_dim, # head_dim_qk head_dim, # head_dim_vo pos_encoding_mode, use_sliding_window, use_logits_soft_cap, ) ) jit_specs.append( flashinfer.decode.gen_batch_decode_module( q_dtype, kv_dtype, q_dtype, torch.int32, head_dim, # head_dim_qk head_dim, # head_dim_vo pos_encoding_mode, use_sliding_window, use_logits_soft_cap, ) ) return jit_specs def gen_persistent_batch_attention_modules( q_dtypes, kv_dtypes, head_dims, use_logits_soft_cap_options, ) -> list[JitSpec]: jit_specs: list[JitSpec] = [] for ( q_dtype, kv_dtype, head_dim, use_logits_soft_cap, ) in itertools.product( q_dtypes, kv_dtypes, head_dims, use_logits_soft_cap_options, ): if q_dtype != kv_dtype: if kv_dtype.itemsize > 1: continue # skip fp16/bf16 mixed precision jit_specs.append( flashinfer.attention.gen_batch_attention_module( q_dtype, kv_dtype, q_dtype, torch.int32, head_dim, # head_dim_qk head_dim, # head_dim_vo 0, # pos_encoding_mode use_logits_soft_cap, False, # use_profiler ) ) return jit_specs def gen_prefill_attention_modules( q_dtypes, kv_dtypes, head_dims, pos_encoding_modes, use_sliding_window_options, use_logits_soft_cap_options, use_fp16_qk_reduction_options, ) -> list[JitSpec]: jit_specs: list[JitSpec] = [] for ( q_dtype, kv_dtype, head_dim, pos_encoding_mode, use_sliding_window, use_logits_soft_cap, use_fp16_qk_reduction, ) in itertools.product( q_dtypes, kv_dtypes, head_dims, pos_encoding_modes, use_sliding_window_options, use_logits_soft_cap_options, use_fp16_qk_reduction_options, ): if q_dtype != kv_dtype: if kv_dtype.itemsize > 1: continue # skip fp16/bf16 mixed precision if is_sm90a_supported(torch.device("cuda")) and is_fa3_backend_supported( pos_encoding_mode, use_fp16_qk_reduction, use_custom_mask=False, dtype_q=q_dtype, dtype_kv=kv_dtype, ): jit_specs.append( flashinfer.prefill.gen_single_prefill_module( "fa3", q_dtype, kv_dtype, q_dtype, head_dim, # head_dim_qk head_dim, # head_dim_vo pos_encoding_mode, use_sliding_window, use_logits_soft_cap, use_fp16_qk_reduction, ) ) jit_specs.append( flashinfer.prefill.gen_batch_prefill_module( "fa3", q_dtype, kv_dtype, q_dtype, torch.int32, head_dim, # head_dim_qk head_dim, # head_dim_vo pos_encoding_mode, use_sliding_window, use_logits_soft_cap, use_fp16_qk_reduction, ) ) jit_specs.append( flashinfer.prefill.gen_single_prefill_module( "fa2", q_dtype, kv_dtype, q_dtype, head_dim, # head_dim_qk head_dim, # head_dim_vo pos_encoding_mode, use_sliding_window, use_logits_soft_cap, use_fp16_qk_reduction, ) ) jit_specs.append( flashinfer.prefill.gen_batch_prefill_module( "fa2", q_dtype, kv_dtype, q_dtype, torch.int32, head_dim, # head_dim_qk head_dim, # head_dim_vo pos_encoding_mode, use_sliding_window, use_logits_soft_cap, use_fp16_qk_reduction, ) ) # required for attention with custom mask jit_specs.append(flashinfer.quantization.gen_quantization_module()) jit_specs.append(flashinfer.page.gen_page_module()) return jit_specs