""" Copyright (c) 2023 by FlashInfer team. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pytest import torch from alibi_reference import alibi_attention from jit_utils import gen_decode_attention_modules, gen_prefill_attention_modules import flashinfer @pytest.fixture(autouse=True, scope="module") def warmup_jit(): flashinfer.jit.build_jit_specs( gen_decode_attention_modules( [torch.float16], # q_dtypes [torch.float16], # kv_dtypes [128, 256], # head_dims [0, 2], # pos_encoding_modes [False], # use_sliding_windows [False], # use_logits_soft_caps ) + gen_prefill_attention_modules( [torch.float16], # q_dtypes [torch.float16], # kv_dtypes [128, 256], # head_dims [0, 2], # pos_encoding_modes [False], # use_sliding_windows [False], # use_logits_soft_caps [False], # use_fp16_qk_reductions ), verbose=False, ) yield @pytest.mark.parametrize("seq_len", [1, 9, 81, 729]) @pytest.mark.parametrize("num_heads", [4, 8, 32]) @pytest.mark.parametrize("head_dim", [128, 256]) def test_single_decode_alibi( seq_len, num_heads, head_dim, ): q = torch.randn(num_heads, head_dim, device="cuda:0", dtype=torch.float16) k = torch.randn(seq_len, num_heads, head_dim, device="cuda:0", dtype=torch.float16) v = torch.randn(seq_len, num_heads, head_dim, device="cuda:0", dtype=torch.float16) o = flashinfer.single_decode_with_kv_cache(q, k, v, pos_encoding_mode="ALIBI") mask = torch.ones(1, seq_len, dtype=torch.bool, device="cuda:0") o_ref = alibi_attention(q.unsqueeze(0), k, v, mask).squeeze(0) torch.testing.assert_close(o, o_ref, rtol=1e-3, atol=1e-3) @pytest.mark.parametrize("q_len", [1, 17, 81, 987]) @pytest.mark.parametrize("kv_len", [1, 17, 81, 987]) @pytest.mark.parametrize("num_heads", [4, 8, 32]) @pytest.mark.parametrize("head_dim", [128, 256]) @pytest.mark.parametrize("causal", [False, True]) def test_single_prefill_alibi( q_len, kv_len, num_heads, head_dim, causal, ): if causal and q_len > kv_len: pytest.skip("Causal attention requires q_len <= kv_len") q = torch.randn(q_len, num_heads, head_dim, device="cuda:0", dtype=torch.float16) k = torch.randn(kv_len, num_heads, head_dim, device="cuda:0", dtype=torch.float16) v = torch.randn(kv_len, num_heads, head_dim, device="cuda:0", dtype=torch.float16) o = flashinfer.single_prefill_with_kv_cache( q, k, v, causal=causal, pos_encoding_mode="ALIBI" ) mask = torch.ones(q_len, kv_len, dtype=torch.bool, device="cuda:0") if causal: mask = torch.tril(mask, diagonal=kv_len - q_len) o_ref = alibi_attention(q, k, v, mask) torch.testing.assert_close(o, o_ref, rtol=1e-2, atol=1e-2) if __name__ == "__main__": test_single_decode_alibi(4096, 32, 128) test_single_prefill_alibi(128, 128, 8, 128, False)