# Test Coverage Report (ONNX-ML Operators)
## Outlines
* [Node Test Coverage](#node-test-coverage)
* [Model Test Coverage](#model-test-coverage)
* [Overall Test Coverage](#overall-test-coverage)
# Node Test Coverage
## Summary
Node tests have covered 4/19 (21.05%, 0 generators excluded) common operators.
Node tests have covered 0/0 (N/A) experimental operators.
* [Covered Common Operators](#covered-common-operators)
* [No Cover Common Operators](#no-cover-common-operators)
* [Covered Experimental Operators](#covered-experimental-operators)
* [No Cover Experimental Operators](#no-cover-experimental-operators)
## 💚Covered Common Operators
### ArrayFeatureExtractor
There are 1 test cases, listed as following:
arrayfeatureextractor
```python
node = onnx.helper.make_node(
"ArrayFeatureExtractor",
inputs=["x", "y"],
outputs=["z"],
domain="ai.onnx.ml",
)
x = np.arange(12).reshape((3, 4)).astype(np.float32)
y = np.array([0, 1], dtype=np.int64)
z = np.array([[0, 4, 8], [1, 5, 9]], dtype=np.float32).T
expect(
node,
inputs=[x, y],
outputs=[z],
name="test_ai_onnx_ml_array_feature_extractor",
)
```
### Binarizer
There are 1 test cases, listed as following:
binarizer
```python
threshold = 1.0
node = onnx.helper.make_node(
"Binarizer",
inputs=["X"],
outputs=["Y"],
threshold=threshold,
domain="ai.onnx.ml",
)
x = np.random.randn(3, 4, 5).astype(np.float32)
y = compute_binarizer(x, threshold)[0]
expect(node, inputs=[x], outputs=[y], name="test_ai_onnx_ml_binarizer")
```
### LabelEncoder
There are 2 test cases, listed as following:
string_int_label_encoder
```python
node = onnx.helper.make_node(
"LabelEncoder",
inputs=["X"],
outputs=["Y"],
domain="ai.onnx.ml",
keys_strings=["a", "b", "c"],
values_int64s=[0, 1, 2],
default_int64=42,
)
x = np.array(["a", "b", "d", "c", "g"]).astype(object)
y = np.array([0, 1, 42, 2, 42]).astype(np.int64)
expect(
node,
inputs=[x],
outputs=[y],
name="test_ai_onnx_ml_label_encoder_string_int",
)
node = onnx.helper.make_node(
"LabelEncoder",
inputs=["X"],
outputs=["Y"],
domain="ai.onnx.ml",
keys_strings=["a", "b", "c"],
values_int64s=[0, 1, 2],
)
x = np.array(["a", "b", "d", "c", "g"]).astype(object)
y = np.array([0, 1, -1, 2, -1]).astype(np.int64)
expect(
node,
inputs=[x],
outputs=[y],
name="test_ai_onnx_ml_label_encoder_string_int_no_default",
)
```
tensor_based_label_encoder
```python
tensor_keys = make_tensor(
"keys_tensor", onnx.TensorProto.STRING, (3,), ["a", "b", "c"]
)
repeated_string_keys = ["a", "b", "c"]
x = np.array(["a", "b", "d", "c", "g"]).astype(object)
y = np.array([0, 1, 42, 2, 42]).astype(np.int16)
node = onnx.helper.make_node(
"LabelEncoder",
inputs=["X"],
outputs=["Y"],
domain="ai.onnx.ml",
keys_tensor=tensor_keys,
values_tensor=make_tensor(
"values_tensor", onnx.TensorProto.INT16, (3,), [0, 1, 2]
),
default_tensor=make_tensor(
"default_tensor", onnx.TensorProto.INT16, (1,), [42]
),
)
expect(
node,
inputs=[x],
outputs=[y],
name="test_ai_onnx_ml_label_encoder_tensor_mapping",
)
node = onnx.helper.make_node(
"LabelEncoder",
inputs=["X"],
outputs=["Y"],
domain="ai.onnx.ml",
keys_strings=repeated_string_keys,
values_tensor=make_tensor(
"values_tensor", onnx.TensorProto.INT16, (3,), [0, 1, 2]
),
default_tensor=make_tensor(
"default_tensor", onnx.TensorProto.INT16, (1,), [42]
),
)
expect(
node,
inputs=[x],
outputs=[y],
name="test_ai_onnx_ml_label_encoder_tensor_value_only_mapping",
)
```
### TreeEnsemble
There are 2 test cases, listed as following:
tree_ensemble_set_membership
```python
node = onnx.helper.make_node(
"TreeEnsemble",
["X"],
["Y"],
domain="ai.onnx.ml",
n_targets=4,
aggregate_function=1,
membership_values=make_tensor(
"membership_values",
onnx.TensorProto.FLOAT,
(8,),
[1.2, 3.7, 8, 9, np.nan, 12, 7, np.nan],
),
nodes_missing_value_tracks_true=None,
nodes_hitrates=None,
post_transform=0,
tree_roots=[0],
nodes_modes=make_tensor(
"nodes_modes",
onnx.TensorProto.UINT8,
(3,),
np.array([0, 6, 6], dtype=np.uint8),
),
nodes_featureids=[0, 0, 0],
nodes_splits=make_tensor(
"nodes_splits",
onnx.TensorProto.FLOAT,
(3,),
np.array([11, 232344.0, np.nan], dtype=np.float32),
),
nodes_trueleafs=[0, 1, 1],
nodes_truenodeids=[1, 0, 1],
nodes_falseleafs=[1, 0, 1],
nodes_falsenodeids=[2, 2, 3],
leaf_targetids=[0, 1, 2, 3],
leaf_weights=make_tensor(
"leaf_weights", onnx.TensorProto.FLOAT, (4,), [1, 10, 1000, 100]
),
)
x = np.array([1.2, 3.4, -0.12, np.nan, 12, 7], np.float32).reshape(-1, 1)
expected = np.array(
[
[1, 0, 0, 0],
[0, 0, 0, 100],
[0, 0, 0, 100],
[0, 0, 1000, 0],
[0, 0, 1000, 0],
[0, 10, 0, 0],
],
dtype=np.float32,
)
expect(
node,
inputs=[x],
outputs=[expected],
name="test_ai_onnx_ml_tree_ensemble_set_membership",
)
```
tree_ensemble_single_tree
```python
node = onnx.helper.make_node(
"TreeEnsemble",
["X"],
["Y"],
domain="ai.onnx.ml",
n_targets=2,
membership_values=None,
nodes_missing_value_tracks_true=None,
nodes_hitrates=None,
aggregate_function=1,
post_transform=0,
tree_roots=[0],
nodes_modes=make_tensor(
"nodes_modes",
onnx.TensorProto.UINT8,
(3,),
np.array([0, 0, 0], dtype=np.uint8),
),
nodes_featureids=[0, 0, 0],
nodes_splits=make_tensor(
"nodes_splits",
onnx.TensorProto.DOUBLE,
(3,),
np.array([3.14, 1.2, 4.2], dtype=np.float64),
),
nodes_truenodeids=[1, 0, 1],
nodes_trueleafs=[0, 1, 1],
nodes_falsenodeids=[2, 2, 3],
nodes_falseleafs=[0, 1, 1],
leaf_targetids=[0, 1, 0, 1],
leaf_weights=make_tensor(
"leaf_weights",
onnx.TensorProto.DOUBLE,
(4,),
np.array([5.23, 12.12, -12.23, 7.21], dtype=np.float64),
),
)
x = np.array([1.2, 3.4, -0.12, 1.66, 4.14, 1.77], np.float64).reshape(3, 2)
y = np.array([[5.23, 0], [5.23, 0], [0, 12.12]], dtype=np.float64)
expect(
node,
inputs=[x],
outputs=[y],
name="test_ai_onnx_ml_tree_ensemble_single_tree",
)
```
## 💔No Cover Common Operators
### CastMap (call for test cases)
### CategoryMapper (call for test cases)
### DictVectorizer (call for test cases)
### FeatureVectorizer (call for test cases)
### Imputer (call for test cases)
### LinearClassifier (call for test cases)
### LinearRegressor (call for test cases)
### Normalizer (call for test cases)
### OneHotEncoder (call for test cases)
### SVMClassifier (call for test cases)
### SVMRegressor (call for test cases)
### Scaler (call for test cases)
### TreeEnsembleClassifier (call for test cases)
### TreeEnsembleRegressor (call for test cases)
### ZipMap (call for test cases)
## 💚Covered Experimental Operators
## 💔No Cover Experimental Operators
# Model Test Coverage
No model tests present for selected domain
# Overall Test Coverage
## To be filled.